

Cairo University Faculty of Veterinary medicine Department of Virology

Development of Recombinase Polymerase Amplification (RPA) assays for detecting *Avian influenza viruses*

Thesis presented by

By

Nahed Yehia Abd-Elaziz

(B.V.Sc., Cairo University, 2006) (M.V.Sc., Virology, Cairo University, 2012)

For the degree of Philosophy of Doctor in Veterinary Medical Science (Virology)

Under supervision of

Prof. Dr. Mohamed Abd-Elhameed Shalaby

Professor of Virology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Ahmed A. El-Sanousi

Dr. Abdel-Sattar Arafa

Professor of Virology,

Researcher

Faculty of Veterinary Medicine

Animal Health Research Institute

Cairo University

Prof .Dr. Manfred Weidmann

Professor of virology

Stirling University, Scotland, UK

2015

Cairo University

Faculty of Veterinary medicine

Department of Virology

Supervision sheet Supervisors

Prof. Dr. Mohamed Abd-Elhameed Shalaby

Professor of Virology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Ahmed A. El-Sanousi

Professor of Virology,
Faculty of Veterinary Medicine
Cairo University

Dr. Abdel-Sattar Arafa

Researcher

Animal Health Research Institute

Prof .Dr. Manfred Weidmann

Professor of virology

Stirling University, Scotland, UK

Cairo University

Faculty of Veterinary Medicine

Department of Virology.

Name : Nahed Yehia Abd-Elaziz
Date and place of birth : 18/1/1985, Cairo

Nationality : Egyptian

Degree : Philosophy of Doctor in Veterinary Medical Science

Specification : Virology

Supervisors :

1-Prof. Dr. Mohamed Abd Elhameed Shalaby.

Professor of Virology, Faculty of Veterinary Medicine, Cairo University.

2- Prof. Dr. Ahmed A El-Sanousi.

Professor of Virology, Faculty of Veterinary Medicine, Cairo University.

3- Dr. Abdel-Sattar Arafa Mohamed.

Researcher, Animal Health Research Institute

4-Prof .Dr. Manfred Weidmann.

Professor of virology, Stirling University, Scotland, UK

Abstract

Avian influenza virus can lead to severe economic losses in the poultry industry. The most common types of AIV in Egypt are highly pathogenic AI H5N1 and low pathogenic AI H9N2. AI H5N1 caused economic damage and significant threat to public health and AI H9N2 cause severe economic losses in poultry industry especially when co-infection took place with other pathogens. Therefore, the rapid detection of AI H5,H9 viruses is very important in order to control the disease. In this study, Reverse Transcription Recombinase Polymerase Amplification assay (RT-RPA) assay for the detection of AI subtype H5, H9 was developed. An *in-vitro* transcribed RNA standard for AI H5, H9 and standard virus titration by EID₅₀ for AI H9N2 was developed and used to determine the assay sensitivity. The AI H5 RT-RPA assay was able to detect one RNA molecule/ul and AI H9 RT-RPA can detect one EID₅₀ or one RNA molecule/ul within 8 minutes than H5 real-time RT-PCR that detect one copy of RNA and H9 real-time RT-PCR detect one log 10 EID₅₀ in 90 minutes. AI H5 and H9 RT-RPA assay did not detect nucleic acid extracted from AI H5 and H9 negative samples or from other pathogen producing respiratory manifestation in poultry. The clinical performance of the AI H5 and H9 RT-RPA assay was tested in 30 samples; the sensitivity of AI H5 and H9 RT-RPA and real-time RT-PCR were 100%.AI H5 RT-RPA was able to detect multiple mutant strains of AI H5N1 field samples and other strain as AI H5N2 and AI H5N8 in the presence of up to fourteen mutations. In conclusion, AI H5 and H9 RT-RPA were faster, simple, sensitive, specific and portable than real-time RT-PCR.

Key words: Avian influenza, AI H5N1, AI H9N2, RT-RPA, real-time RT-PCR, diagnosis.

Dedication

Dedicated to my family

..... Father,

.... Mother

...... My Brother

Acknowledgment

First and always, all thanks to Allah, Almighty, the most merciful and the compassionate. His guidance and sustenance made this study a reality and came to the light.

I would like to express my deepest gratitude to prof. Dr. Mohamed Abd Elhameed Shalaby, Professor of virology, Faculty of Veterinary Medicine, Cairo University, for his precious supervision, endless donation and continuous encouragement throughout my post graduate study.

I will never forget the efforts awarded by prof. Dr. Ahmed Abd El-Ghani El-Sanousi, Professor of Virology department, Faculty of Veterinary Medicine, Cairo University. I think that I learned from him many things in science during his supervision for my theses which will play a major role in designing of my future life. I thank him for all his effective guidance and continuous support lead the way for any progress of the present thesis.

Grateful thanks and sincere gratitude are extended to prof. DR. Manfred Weidmann, Institutes of Aquaculture, Stirling University, Scotland, UK. for his for his precious supervision and technical support . I thank him for all his effective guidance and continuous support lead the way for any progress of the present thesis.

Great thanks should be admitted to **Dr. Abdelsattar Arafa**, researcher, NLQP, Animal Health Research Institute for his precious supervision and technical support. Endless donation and continuous encouragement throughout my post graduate study.

Great thanks should be admitted to *Prof. Dr. Mohamed Khalifa Hassan*, head of National Laboratory for Veterinary Quality Control on Poultry Production, Dokki, Giza., for her continuous care, follow up as well as supplying me with very important reagents and biological materials help me in conduction of this work.

My endless thanks for **Ahmed Abd El Wahed**, researcher, Unit of Infection Models, German Primate Center, Kellnerweg for his advice and support. Actually, he gave me many precious advices in science and in life which I will put it in front of my eyes during my coming life in the future. I think that he gave for me many things which make me cannot thank him as he deserved.

Specially, I would like to thank **Andrea Koch** *in the Institute of Virology University Medical in German, for synthesis the AI H5, H9 in vitro transcribed RNA.*

Many thanks from all my heart to my colleagues in the gene analysis unit, PCR unit, virology unit and all members in National Labolatory for Quality Control on Poultry Production, Animal Health Research Institute, for their kind help during the study.

A special word of thanks must be introduced to all doctors at the Virology department specially Dr. Basem M. Abdel-Hamed, Faculty of Veterinary Medicine, Cairo University, for their help.

Lastly, my cardinal thanks to my great Mother, my father and my brother.

List of Contents

Content	Page
List of contents.	I
List of tables.	X
List of figures.	XII
1. Introduction	1
2.Review of literature	5
2.1.Historical background	5
2.1.1.History of AI worldwide	5
2.1.2.History of H5N1 virus worldwide	5
2.1.3.History of H9N2 virus worldwide	6
2.1.4.History of H5N1 AIV in Egypt	7
2.1.5.History of H9N2 AIV in Egypt	9
2.2.Causative agent	10
2.2.1.Classification and nomenclature	10
2.2.2.Morphology and structure of virus	11
2.2.3.Genomic organization	12
2.2.4.Functional mapping of individual gene	13
2.2.4.1.Polymerase subunits PBI, PB2and PA	13
2.2.4.1.1.The PB1 Protein	14
2.2.4.1.2.The PB2 Protein	14
2.2.4.1.3.The PA Protein	15
2.2.4.2.NP protein	15
2.2.4.3. NA protein	16
2.2.4.4.M protein	17
2.2.4.5.NS protein	18
2.2.4.6.Haemagglutinin	18
2.3. Virus replication	23
2.3.1.virus attachment	23
2.3.2.virus entry	24
2.3.3.synthesis of viral RNA	25

2.3.4.synthesis of viral protien	25
2.3.5.Packaging of RNA and assembly of virus	26
2.3.6.Virus budding and release	26
2.4.Antigenic variation of AI virus strain	28
2.4.1.Antigenic drift	28
2.4.2.Antigenic shift	29
2.5.Diagnosis	30
2.5.1Clinical signs	31
2.5.2.PM lesion	32
2.5.3.Laboratory diagnosis_of Avian influenza virus	32
2.5.3.1.Sample collection, transportation and preservation	32
2.5.3.2.Virus isolation	34
2.5.3.3.Direct Detection of AI Viral Proteins	36
2.5.3.3.1.Rapid strip test	36
2.5.3.3.2.Antigen-Capture ELISA (AC-ELISA)	37
2.5.3.3.Immunoflurescence Test (IFT)	37
2.5.3.4.Serological tests for AI antibody detection	38
2.5.3.4.1.Agar gel immunodiffusion	38
2.5.3.4.2.Enzyme Linked Immunosorbant assay (ELISA)	39
2.5.3.4.3.Haemagglutination Inhibition test	39
2.5.3.5.Molecular diagnosis	40
2.5.3.5.1.Polymerase chain reaction (RT-PCR)	41
2.5.3.5.2.Real-time PCR/RT-PCR	43
2.5.3.5.3.Loop-mediated isothermal amplification	49
2.5.3.5.4.Recombinase polymerase amplification (RPA)	50
2.5.3.5.5.NASBA	53
2.5.3.5.6.Molecular microarray	53
3.Material and Methods	54
3.1.Experimental design	54
3.2.Material	55
3.2.1. Materials used in the development of AI H5 RT-RPA	55
3.2.1.1. Materials used in design of AI H5 RT-RPA primers and probe	55

3.2.1.2. Materials used in generation of in vitro transcribed AI H5 RNA	56
standard	
3.2.1.2.1. Reference strain used in generation of AI H5 in vitro	56
transcribed RCR	
3.2.1.2.2. Materials used for extraction of RNA from AI H5 reference	56
strain	
3.2.1.2.3. Materials used for reverse transcription polymerase chain	57
reaction(RT-PCR) of HA2 segment of HA gene of AI H5 reference	
strain	<i></i>
3.2.1.2.4. Materials used for agarose gel electrophoresis	57
3.2.1.2.5. Material used for PCR product purification of AI H5	58
reference strain	
3.2.1.2.6. Materials used for cloning of HA2 segment of HA gene of AI	58
H5 reference strain	
3.2.1.2.7.Material used for plasmid extraction of HA2segment of HA	59
gene of AI H5 reference strain	
3.2.1.2.8. Materials used for sequencing of HA2segment of HA gene of	59
AI H5 reference strain	
3.2.1.2.9. Materials used for transcription of HA2 segment of HA gene	59
3.2.1.3. Materials used for AI H5 real-time RT-PCR	59
3.2.1.4. Materials used for AI H5 RT-RPA	60
3.2.1.5. Different pathogen used in specificity ✗ reactivity of AI	60
H5 RT-RPA	
3.2.1.5.1.Material used in extraction of H9N2,H7N1,I.B and NDV	61
3.2.1.5.2.Material used in extraction of ILT and MG antigen	61
3.2.1.5.3. Material used for PCR of ILT	61
3.2.1.5.4. Materials used for real-time PCR &real-time RT-PCR of	62
H9N2, H7N1, I.B, NDV, MG	
3.2.1.6. The AI H5 field samples collected from different species of	63
poultry and different governorates in Egypt from 2014 and 2015	
3.2.1.6.1 Materials used for AI H5 sample collection	63
3.2.1.6.2. Data of AI H5 field samples	64

3.2.1.7.Different strains used in clinical performance testing AI H5 RT-	64
3.2.2. Materials used in the development of AI H9 RT-RPA	65
3.2.2.1. Materials used for design AI H9 RT-RPA primers and probe	65
3.2.2.2.Materials used in generation of AI H9 RNA standard	66
3.2.2.2.1. Materials used in in- vitro transcribed AI H9 RNA standard	66
3.2.2.2. Materials used in titration of H9N2 standard virus in	66
embryonated chicken eggs	
3.2.2.3. Materials used for AI H9 real time RT-PCR	66
3.2.2.4.Materials used for AI H9 RT-RPA	67
3.2.2.5.Different pathogen used in specificity& cross reactivity of AI H9 RT-RPA test	67
3.2.2.6.The AI H9 field samples collected from different species of	67
poultry and different governorates in Egypt between 2013 and 2014	07
3.2.2.6.1.Materials used for AI H9 sample collection	67
3.2.2.6.2.Data of AI H9 field samples	68
3.2.3.Laboratory equipments& reagents used in AI H5& H9 RT-RPA	68
3.3.Methods	70
3.3.1.Methods used in the development of AI H5 RT-RPA	70
3.3.1.1.Design of AI H5 RT-RPA primers and probe for detection AI H5 gene	70
3.3.1.2.Method used in generation of in vitro transcribed AI H5 RNA	71
3.3.1.2.1.Extraction of RNA of A/chicken/Egypt/1273CA/2012 reference strain	71
3.3.1.2.2.RT-PCR of HA2 segment of HA gene of AI H5 reference	72
3.3.1.2.3.QIAquick Gel Extraction of RT-PCR product of amplified HA2 segment of HA gene of AI H5 reference strain	74
3.3.1.2.4.Method of cloning of HA2 segment of HA gene of AI H5 reference strain	75
3.3.1.2.5.Method of plasmid extraction of cloned gene	76

3.3.1.2.6.Method used for sequence of cloned gene	78
3.3.1.2.7.M13 PCR for linearization of HA2 segment of HA gene of AI H5 reference strain	80
3.3.1.2.8.Transcription of AI H5 gene	81
3.3.1.2.9.Treatment with DNase	81
3.3.1.2.10.Real-time RT-PCR &real-time PCR of in vitro transcribed AI H5 RNA	82
3.3.1.2.11. RNA-Measurement of AI H5 reference strain	85
3.3.1.3.AI H5 RT-RPA sensitivity and reproducibility using in vitro	86
transcribed RNA	
3.3.1.3.1.AI H5 real-time RT-PCR of serial diluted in vitro transcribed AI H5 RNA	86
3.3.1.3.2.AI H5 RT-RPA of serial diluted in vitro transcribed AI H5 RNA	87
3.3.1.3.3. H5 semi-log regression analysis	89
3.3.1.4.AI H5 RT-RPA specificity and cross-reactivity testing	89
3.3.1.4.1.Extraction of RNA from different pathogen used in	89
specificity& cross reactivity	
3.3.1.4.2.PCR of different pathogen used in specificity & cross reactivity	91
3.3.1.4.3.AI H5 RT-RPA of different pathogen used in specificity & cross reactivity	92
3.3.1.5.AI H5 RT-RPA validation using positive AI H5 field samples (by RT-PCR)	93
3.3.1.5.1.Collection of AI H5 field samples	93
3.3.1.5.2.Extraction of RNA from AI H5 field sample	93
3.3.1.5.3.AI H5 real-time RT-PCR of AI H5 field sample	94
3.3.1.5.4.AI H5 RT-RPA of AI H5 field sample	94
3.3.1.5.5. H9 linear regression analysis	94
3.3.1.6.Different AI H5 strains used in clinical performance of AI H5	94
RT-RPA	
3.3.1.6.1. Extraction of RNA of AI H5 strains	94
3.3.1.6.2.AI H5 real-time RT-PCR of AI H5 strains	94

3.3.1.6.3.AI H5 RT-RPA of AI H5 strains	94
3.3.1.7.Multiple alignments of AI H5 RT-RPA primers and exo-probe	95
with field samples sequences	
3.3.2.Method used in the development of AI H9 RT-RPA	95
3.3.2.1.Design of RPA primers and probe for detection AI H9 gene	95
3.3.2.2. Method used in generation of AI H9 RNA standard	96
3.3.2.2.1.Method used in generation of AI H9 RNA standard by using	96
in vitro transcribed RNA	
3.3.2.2.2.Method used in generation of AI H9 RNA standard by propagation and titration of H9N2 standard virus in embryonated chicken eggs	97
3.3.2.3.AI H9 RT-RPA sensitivity and reproducibility testing	98
3.3.2.3.1.AI H9 RT-RPA sensitivity for H9 gene using in vitro	98
transcribed RNA	
3.3.2.3.2.AI H9 RT-RPA sensitivity and reproducibility using infective	98
titrated AI H9N2 standard virus	
3.3.2.3.3.H9 semi-log regression analysis	99
3.3.2.4.AI H9 RT-RPA specificity and cross-reactivity testing	99
3.3.2.4.1.Extraction of RNA from different pathogen used in specificity& cross reactivity	99
3.3.2.4.2.PCR of different pathogen used in specificity ✗ reactivity	99
3.3.2.4.3.AI H9 RT-RPA of different pathogen used in specificity&	99
cross reactivity	
3.3.2.5.AI H9 RT-RPA Validation using positive H9 field samples (by RT-PCR)	100
3.3.2.5.1. Collection of AI H9 field samples and preparation	100
3.3.2.5.2.Extraction of AI H9 field samples	100
3.3.2.5.3.AI H9 real-time RT-PCR of H9 field sampled	100
3.3.2.5.4. H9 RT-RPA of AI H9 field samples	100

3.3.2.5.5.H9 linear regression analysis	100
4.Expermints and Results	101
4.1.Result of RPA for diagnosis of avian influenza subtype H5N1	101
4.1.1.Generation of in vitro transcription AI H5 RNA standard	101
4.1.1.1.Positive amplification of HA2 segment of HA gene of AI H5 reference strain by RT-PCR	101
4.1.1.2.Positive amplification of AI H5 in vitro transcribed RNA using Real-Time RT-PCR	102
4.1.1.3.Negative amplification of AI H5 in vitro transcribed RNA using Real-Time PCR	103
4.1.1.4.AI H5RNA-Measurement	103
4.1.2.Results of AI H5 RT-RPA sensitivity and reproducibility by using	104
AI H5 in vitro transcribed RNA	
4.1.2.1.F3+R1 primers combination produce high sensitivity for	104
detection of HA gene of AI H5N1	
4.1.2.2.AI H5 real-time RT-PCR can detect one copy of RNA molecule /ul	106
4.1.2.3.The AI H5 RT-RPA can detect one copy of RNA molecule/ul	107
4.1.2.4.AI H5 Semi-logarithmic regression	109
4.1.3.Results of AI H5 RT-RPA specificity and cross-reactivity	110
4.1.3.1.The AI H5 RT-RPA detect only AI H5 gene and not cross-reactive with other pathogen	110
4.1.3.2.The H5 RT-RPA is highly specific that detect only AI H5 gene	111
4.1.4.The result of clinical performance of AI H5 RT-RPA using positive H5 field samples	112
4.1.4.1.The AI H5 RT-RPA can detect 100% of AI H5 field samples	112
4.1.4.2.AI H5 linear regression analysis	114
4.1.5.The AI H5 RT-RPA can detect different AI H5 strains rather than AI H5N1	114

4.1.6.Multiple alignments of AI H5 RPA primers and exo-probe with	115
field sequenced samples and H5 strains	
4.2.Result of RT-RPA for diagnosis of avian influenza subtype H9N2	117
4.2.1.Generation of AI H9 RNA standard	117
4.2.1.1.Generation of in-vitro transcription AI H9 RNA standard	117
4.2.1.1.1.Positive amplification of HA2 segment of HA gene of AI H9 reference strain by RT-PCR	117
4.2.1.1.2.Positive amplification of AI H9 in vitro transcribed RNA using RT-PCR	118
4.2.1.1.3.Negative amplification of AI H9 in vitro transcribed RNA using PCR	119
4.2.1.1.4.AI H9 RNA- Measurement	119
4.2.1.2.Generation of titrated reference virus by using EID50	119
method	4.0.0
4.2.2.Results of AI H9 RT-RPA sensitivity and reproducibility	120
4.2.2.1.F1+R1 primers combination produce high sensitivity for	120
detection of HA gene of AI H9N2	
4.2.2.2.Results of AI H9 RT-RPA sensitivity and reproducibility by	122
using AI H9 in vitro transcribed RNA	
4.2.2.3.Results of AI H9 RT-RPA sensitivity and reproducibility by	124
using EID50 titrated AI H9N2 standard virus	
4.2.2.3.1.AI H9 real-time RT-PCR can detect 1log 10 EID 50 of titrated standard AI H9N2 virus	124
4.2.2.3.2.The AI H9 RT-RPA can detect one EID 50 of titrated standard AI H9N2 virus	125
4.2.2.3.3.AI H9 Semi-logarithmic regression	127
4.2.3.Results of AI H9 RT-RPA specificity and cross-reactivity	128
4.2.3.1.The AI H9 RT-RPA detect only AI H9 gene and not cross-reactive with other pathogen	128
4.2.3.2.The H9 RT-RPA is highly specific that detect only AI H9 gene	129

4.2.4. The result of clinical performance of AI H9 RT-RPA using	130
positive H9 field samples	
4.2.4.1.The AI H9 RT-RPA can detect 100% of field samples	130
4.2.4.2.AI H9 linear regression analysis	132
5.Discussion	133
6.Summary	140
7.References	142
List of Abbreviations	173
Amino acid Abbreviation	176
Arabic summary	1-2