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Abstract

Seepage of water under the aprons of heading-up structures is one
of the most important factors that should be carefully studied while
designing any heading-up structure. Seepage can cause different
problems related to uplift pressure and undermining and piping. These
problems threaten the stability of the structures and can lead to their
failure. In nature, soil is normally heterogeneous rather than uniform. One
of the special cases of soil heterogeneity is stratified soil where soil layers

are usually horizontal as most soils deposit in this manner.

This study introduces a new electric analogue experimental
modeling methodology to simulate the effect of soil stratification under
the apron of heading-up structures on the safety against uplift and piping.
This is achieved through making different scenarios for the hydraulic
conductivity values of the layers and their configurations under the apron.
Both SEEP2D and electric analogue models are applied to study seepage
under heading-up structures occurring on both a single layer and stratified
soils. The two models are compared to check the accuracy of the electric
analogue in simulating seepage in a trial to add more verification cases of

the electric approach.

The results showed that the pressure distribution under the floor of
heading up structures is actually non-linear, and accordingly, the linear
assumption can be a weak assumption to study seepage under large
heading up structures and dams. Stratification is found to affect the head

distribution under the apron, and the total flow rate.

The results of the electric analogue are very promising and of good
accuracy compared to numerical modeling. This gives rise to the

applicability of the electric analogue to study seepage under heading up
iii



structure. This can become very useful if future studies could reveal

relations between the electric analogue model and seepage failures.

This research also includes a comparison between 2D and 3D
numerical models, in an attempt to evaluate the effect of neglecting the
third dimension in studying seepage under an apron for both laterally
homogeneous and heterogeneous conditions. Charts relating the exit
gradient resulting from 2D model to that from the 3D model at centerline
and sides of the apron’s width for different values of H/B and different
structure configurations including the presence and lack of an upstream
sheet pile have been developed. In addition, the effects of downstream

wing walls (guide walls) existence on seepage are also assessed.

The results prove that studying seepage in 3D can significantly
become critical over the traditional 2D approach. This makes 3D
simulation essential when studying seepage under large heading up
structures (e.g. large dams) especially in complicated 3D configurations

and lateral heterogeneity and/or anisotropy cases.

In this research piping problem under hydraulic structures is also
reconsidered and a modification to Ojha (2003) critical velocity based
piping model is suggested in an attempt to improve the accuracy of the

critical hydraulic gradient estimation.
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NOTATIONS

B = Width of apron [L]
d = Particle size [L].
d; = Depth of upstream cutoff from its point of intersection with

the apron to its toe level [L].

d, = Depth of downstream cutoff from its point of intersection

with the apron to its toe level [L].
de = Depth of point (e) under the downstream bed [L].
do/T = Relative depth of point (e) [Dimensionless].

e = Any point located on the critical (exit) section along the

whole thickness of pervious stratum (T) under the apron.

f = Coefficient of friction.
g = Gravitational acceleration [LT™].
h = Head difference between upstream and downstream sides of

the apron [L].
he = Piezometric head at point (e) [L].

he/h = Average relative piezometric head at point (e)

[Dimensionless].

H = Head acting on the structure [L].
Heir = Critical head [L].

h¢ = Head loss due to friction [L].
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