

Ain Shams University, Faculty of Engineering, Irrigation and Hydraulics Department.

Modeling Seepage Effects In Heterogeneous Soil Under Heading-Up Structures Using An Experimental And Numerical Methodology

Thesis
Submitted in Partial Fulfillment of the Ph.D. Degree in Civil
Engineering

By Eng. Doaa Anas El-Molla

B.sc. Civil Engineering, Ain Shams University (2004) M.sc. Civil Engineering, Ain Shams University (2009)

Supervised By Prof. Dr. Nahla Mohamed AboulAtta

Professor & Head of the irrigation and Hydraulics Dept. Faculty of Engineering, Ain Shams University

Dr. Ghada Mahmoud Samy

Associate Professor, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Dr. Mohamed Abdel-Hamid Gad

Associate Professor, Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Cairo, Egypt 2014

Statement

This thesis is submitted to the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University in partial fulfillment of the Ph.D. degree in Civil Engineering.

The work in this thesis was carried out in the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date:

Name: Doaa Anas Mohamed El-Molla

Signnature:

Acknowledgement

First, my unlimited thanks to Allah

I would like to express my deep appreciation and sincere thanks to Prof. Dr. Nahla Mohamed AboulAtta Professor & Head of the irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for her sincere assistance and valuable advice.

Grateful thanks are due to Dr. Ghada Mahmoud Samy, Associate Professor, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for her kind guidance and continuous encouragement throughout this work.

Deep gratitude and thanks are due to Dr. Mohamed Abdel-Hamid Gad, Associate Professor, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for his sincere advice, continuous help, valuable time and remarks and useful revision of the work.

Finally, I would like to thank my family for their support; specially my father and my mother. Special thanks to my husband and daughter for their support, patience and understanding during periods of hard work. I would also like to thank my brother for his support.

Abstract

Seepage of water under the aprons of heading-up structures is one of the most important factors that should be carefully studied while designing any heading-up structure. Seepage can cause different problems related to uplift pressure and undermining and piping. These problems threaten the stability of the structures and can lead to their failure. In nature, soil is normally heterogeneous rather than uniform. One of the special cases of soil heterogeneity is stratified soil where soil layers are usually horizontal as most soils deposit in this manner.

This study introduces a new electric analogue experimental modeling methodology to simulate the effect of soil stratification under the apron of heading-up structures on the safety against uplift and piping. This is achieved through making different scenarios for the hydraulic conductivity values of the layers and their configurations under the apron. Both SEEP2D and electric analogue models are applied to study seepage under heading-up structures occurring on both a single layer and stratified soils. The two models are compared to check the accuracy of the electric analogue in simulating seepage in a trial to add more verification cases of the electric approach.

The results showed that the pressure distribution under the floor of heading up structures is actually non-linear, and accordingly, the linear assumption can be a weak assumption to study seepage under large heading up structures and dams. Stratification is found to affect the head distribution under the apron, and the total flow rate.

The results of the electric analogue are very promising and of good accuracy compared to numerical modeling. This gives rise to the applicability of the electric analogue to study seepage under heading up

structure. This can become very useful if future studies could reveal relations between the electric analogue model and seepage failures.

This research also includes a comparison between 2D and 3D numerical models, in an attempt to evaluate the effect of neglecting the third dimension in studying seepage under an apron for both laterally homogeneous and heterogeneous conditions. Charts relating the exit gradient resulting from 2D model to that from the 3D model at centerline and sides of the apron's width for different values of H/B and different structure configurations including the presence and lack of an upstream sheet pile have been developed. In addition, the effects of downstream wing walls (guide walls) existence on seepage are also assessed.

The results prove that studying seepage in 3D can significantly become critical over the traditional 2D approach. This makes 3D simulation essential when studying seepage under large heading up structures (e.g. large dams) especially in complicated 3D configurations and lateral heterogeneity and/or anisotropy cases.

In this research piping problem under hydraulic structures is also reconsidered and a modification to Ojha (2003) critical velocity based piping model is suggested in an attempt to improve the accuracy of the critical hydraulic gradient estimation.

Table of Contents

Statement	I
Acknowledgement	II
Abstract	III
Table of Contents	V
List of Figures	VII
List of Tables	XIII
Notations	XIV
Chapter (1): Introduction	1
1.1 GENERAL	1
Chapter (2): Literature Review	4
2.1 Seepage Problem 2.1.1 Uplift 2.1.2 Undermining 2.1.3 Piping	4 5
2.1.4 Erosion of the bed 2.2 Critical Gradient Equations	6
2.2.1 Theoretical background of critical gradient models	
2.2.2 Critical head using Darcy's law	
2.2.3 Dependence of critical head on porosity	
2.3.1 Exact methods	16
2.3.3 Experimental methods (Solution by Analogies)	22
2.3.5 Numerical methods	26
2.4.1 Governing equation of SEEP2D	28
2.5 SEEP3D	29

2.5.3 Finite element equations	30
2.6 SUMMARY OF THE PREVIOUS RESEARCH WORK	
2.7 UNIQUENESS OF THE PRESENT STUDY	44
Chapter (3): Comparative Analysis Between Electric Analogue and a 2D Numerical Seepage Model	45
3.1 Introduction.	
3.2 DESCRIPTION OF THE MODELS	
3.2.1 SEEP2D	
3.2.2 Electric Analogue	
3.3 APPLICATION OF THE MODEL	
3.3.1 For one soil layer under the apron	50
3.3.2 For two soil layers under the apron	51
Chapter (4): Comparative Analysis Between 2D And 3D Numerical Seepage Models	81
4.1 Introduction	81
4.2 Theoretical Background	
4.3 Models Application	
4.3.1 3D Model Verification	
4.3.2 Effect of bed width	
4.3.3 Effect of lateral heterogeneity of the 3D domain	
4.3.4 Effect of downstream wing walls	93
Chapter (5): Piping Determination Using the Critical Velocity Concept	122
5.1 Introduction	122
5.2 MATHEMATICAL DERIVATION	
5.3 Test cases	126
5.4 Closing remarks	129
Chapter (6): Conclusions and Recommendations	132
6.1 CONCLUSIONS	
6.2 RECOMMENDATIONS	
References	136
Appendix (A): Stratified Electric Analogue Experimental Readings	142
APPENDIX (B): TABLES COMPARING HEAD VALUES OBTAINED FROM	
ELECTROLYTIC TANK AND SEEP2D	147
APPENDIX (C): SEEP3D EXIT GRADIENT RESULTS ACROSS THE WIDTH OF THE APPON	151

List of Figures

Figure (2-1): Definition sketch for sand boil formation	9
Figure (2-2): The Flow Net	
Figure (2-3): Electric analogy model	
Figure (2-4): Sand tank model [Harr, 1962]	
Figure (2-5): Hele-Shaw model [Harr, 1962]	
Figure (2-6): Method of Fragments [Harr, 1962]	
Figure (3-1): The variables involved in the problem of one soil	
layer under the apron	54
Figure (3-2): The variables involved in the problem of stratified	
soil under the apron	54
Figure (3-3): A photograph of the electrolytic tank used to study	
one layer of soil under the apron.	55
Figure (3-4): Schematic diagram for the plan of the electrolytic	
tank considering one layer of soil under the apron	55
Figure (3-5): Plan for the mesh used to take the voltage readings	
in the case of one layer	56
Figure (3-6): A photograph of the electrolytic tank considering	
two soil layers under the structure	56
Figure (3-7): Schematic diagram for the plan of the electrolytic	
tank showing the configuration of the two layers	57
Figure (3-8): Plan for the mesh used to take the voltage readings	
showing the configuration of the two layers	57
Figure (3-9): The D.C. power source with rheostat	58
Figure (3-10): The digital voltmeter	58
Figure (3-11): Comparison between SEEP2D and Electric	
Analogue for the case of a single layer of soil, No Blanket, No	
Sheet piles	59
Figure (3-12): Comparison between SEEP2D and Electric	
Analogue for the case of a single layer of soil, No Blanket, US	
Sheet pile	60
Figure (3-13): Comparison between SEEP2D and Electric	
Analogue for the case of a single layer of soil, No Bl-anket, DS	
Sheet pile	61
Figure (3-14): Comparison between SEEP2D and Electric	
Analogue for the case of a single layer of soil, No Blanket, US	
and DS Sheet piles	62
Figure (3-15): Comparison between SEEP2D and Electric	
Analogue for the case of a single layer of soil, 5m Blanket	
Length No Sheet piles	63

Figure (3-16): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 5m Blanket
Length, US Sheet pile64
Figure (3-17): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 5m Blanket
Length, DS Sheet pile65
Figure (3-18): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 5m Blanket
Length, US and DS Sheet piles
Figure (3-19): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 10m Blanket
Length, No Sheet piles67
Figure (3-20): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 10m Blanket
Length, US Sheet pile
Figure (3-21): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 10m Blanket
Length, DS Sheet pile69
Figure (3-22): Comparison between SEEP2D and Electric
Analogue for the case of a single layer of soil, 10m Blanket
Length, US and DS Sheet piles Sheet piles70
Figure (3-23): The effect of different hydraulic conductivity
ratios in the case of stratified soil under the apron on
equipotential lines for the cases shown in Table (1)71
Figure (3-24): Comparison between SEEP2D and Electric
Analogue for the case of two layers of soil, No sheet piles, K _u /K _L
=1, H= 4.5 m72
Figure (3-25): Comparison between SEEP2D and Electric
Analogue for the case of two layers of soil, No sheet piles, Ku/K _L
=23.5, H= 4.5 m73
Figure (3-26): Comparison between SEEP2D and Electric
Analogue for the case of two layers of soil, No sheet piles, K _u /K _L
=35, H= 4.5 m74
Figure (3-27): Comparison between SEEP2D and Electric
Analogue for the case of two layers of soil, No sheet piles, K _u /K _L
=94, H= 4.5 m75
Figure (3-28): Comparison between SEEP2D and Electric
Analogue for the case of two layers of soil, No sheet piles, K _u /K _L
=135, H= 4.5 m76
Figure (3-29): Comparison between SEEP2D and Electric
Analogue for the case of two layers of soil, No sheet piles, K _u /K _L
-0.0425 H - 4.5 m

Figure (3-30): Comparison between SEEP2D and Electric	
Analogue for the case of two layers of soil, No Sheet piles, $K_{\text{u}}/K_{\text{L}}$	
=0.0286, H= 4.5 m	78
Figure (3-31): Comparison between SEEP2D and Electric	
Analogue for the case of two layers of soil, No sheet piles, K_u/K_L	
=0.0106, H= 4.5 m	79
Figure (3-32): Comparison between SEEP2D and Electric	
Analogue for the case of two layers of soil, No sheet piles, K_u/K_L	
=0.0074, H= 4.5 m	80
Figure (4-1): The variables involved in the problem	93
Figure (4-2): Sample of Seep3D domain for the case of no sheet	
piles and B=10 m	94
Figure (4-3): Sample of the finite element mesh for the case of no	
sheet piles and B=10 m	94
Figure (4-4): Sample of Seep3D boundary conditions for the case	
of no sheet piles and B=10 m	94
Figure (4-5): Sample of Seep3D results, head distribution in the	
soil under the apron for the case of no sheet piles and B=10 m	94
Figure (4-6): Seep3D results in Elevation, Plan, and side view	95
for the case of no sheet piles and B=10m	95
Figure (4-7): Solution of Seep3D showing head distribution	
under the apron for the case of B=5m, considering Impermeable	
(excluded) side banks	96
Figure (4-8): Uplift distribution under the apron for the studied	
widths of the structure (at centerline) and the 2D model H=4.5 m	97
Figure (4-9): Uplift distribution under the apron for the studied	
widths of the structure (at sides) compared to the 2D model,	
H=4.5 m	97
Figure (4-10): Exit gradient distribution across the width of the	
apron, H=4.5 m	98
Figure (4-11): Comparison between exit gradient at centerline	
with the change in the width of the structure from 3D model and	
its value from 2D model, H=4.5 m	98
Figure (4-12): The ratio between 3D exit gradient and 2D exit	
gradient at centerline and sides of apron for different H/B values	99
Figure (4-13): Uplift distribution under the apron for the studied	
widths of the structure (at centerline) and the 2D model, H=4.5 m	99
Figure (4-14): Uplift distribution under the apron for the studied	
widths of the structure (at sides) compared to the 2D model,	
H=4.5 m	100
Figure (4-15): Exit gradient distribution across the width of the	
apron, H=4.5 m	100

Figure (4-17): The ratio between 3D exit gradient and 2D exit	
gradient at centerline and sides of apron for different H/B values,	
H=4.5 m	101
Figure (4- 18) Different scenarios for heterogeneity of sides, No	
	102
Figure (4-19) Uplift under apron at centerline of bed, Scenario	
(1), No sheet piles, B=5m, H=4.5m	103
Figure (4-20) Uplift under apron at sides of bed, Scenario (1), No	
sheet piles, B=5m, H=4.5m	103
Figure (4-21) Uplift under apron at centerline of bed, Scenario	
(1), No sheet piles, B=50m, H=4.5m	104
Figure (4-22) Uplift under apron at sides of bed, Scenario (1), No	
sheet piles, B=50m, H=4.5m	104
Figure (4-23) Uplift under apron at centerline of bed, Scenario	
(1), Upstream sheet pile, B=5m, H=4.5m	105
Figure (4-24) Uplift under apron at sides of bed, Scenario (1),	
Upstream sheet pile, B=5m, H=4.5m	105
Figure (4-25) Uplift under apron at centerline of bed, Scenario	
(1), Upstream sheet pile, B=50 m, H=4.5m	106
Figure (4-26) Uplift under apron at sides of bed, Scenario (1),	
Upstream sheet pile, B=50 m, H=4.5m	106
Figure (4-27) Uplift under apron at centerline of bed Scenario	
(2), No sheet piles, B=5m, H=4.5m	107
Figure (4-28) Uplift under apron at sides of bed, Scenario (2), No	
sheet piles, B=5m, H=4.5m	107
Figure (4-29) Uplift under apron at centerline of bed, Scenario	
(2), No sheet piles, B=50m, H=4.5m	108
Figure (4-30) Uplift under apron at sides of bed, Scenario (2), No	
sheet piles, B=50 m, H=4.5m	108
Figure (4-31) Uplift under apron at centerline of bed, Scenario	
(2), Upstream sheet pile, B=5 m, H=4.5m	109
Figure (4-32) Uplift under apron at sides of bed, Scenario (2),	
Upstream sheet pile, B=5 m, H=4.5m	109
Figure (4-33) Uplift under apron at centerline of bed, Scenario	
(2), Upstream sheet pile, B=50 m, H=4.5m	110
Figure (4-34) Uplift under apron at sides of bed S,cenario (2),	
Upstream sheet pile, B=50 m, H=4.5m	110
Figure (4-35): Exit gradient distribution across the bed, Scenario	
(1), No sheet piles, B=5m, H=4.5m	111
Figure (4-36): Exit gradient distribution across the bed, Scenario	
(1), No sheet piles, B=50m, H=4.5m	111
Figure (4-37): Exit gradient distribution across the bed, Scenario	
(1). Upstream sheet piles. B=5m, H=4.5m	112

Figure (4-38): Exit gradient distribution across the bed, Scenario
(1), Upstream sheet piles, B=50m, H=4.5m112
Figure (4-39): Exit gradient distribution across the bed, Scenario
(2), No sheet piles, B=5m, H=4.5m
Figure (4-40): Exit gradient distribution across the bed, Scenario
(2), No sheet piles, B=50m, H=4.5m113
Figure (4-41): Exit gradient distribution across the bed, Scenario
(2), Upstream sheet piles, B=5m, H=4.5m114
Figure (4-42): Exit gradient distribution across the bed, Scenario
(2), Upstream sheet piles, B=50m, H=4.5m114
Figure (4-43): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (1), No sheet piles, B=5m, H=4.5m115
Figure (4-44): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (1), No sheet piles, B=50m, H=4.5m115
Figure (4-45): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (1), Upstream sheet pile, B=5m,
H=4.5m116
Figure (4-46): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (1), Upstream sheet piles, B=50m,
H=4.5m116
Figure (4-47): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (2), No sheet piles, B=5m, H=4.5m117
Figure (4-48): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (2), No sheet piles, B=50m, H=4.5m117
Figure (4-49): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (2), Upstream sheet piles, B=5m,
H=4.5m
Figure (4-50): Exit gradient values at centerline and sides for
different K _s /K _b , Scenario (2), Upstream sheet piles, B=50m,
H=4.5m
Figure (4-51): 3D/2D ratios for the exit gradient for different
K _s /K _b values, Scenario (1), No Sheet piles, H=4.5119
Figure (4-52): 3D/2D ratios for the exit gradient for different
Ks/Kb values, Scenario (1), Upstream Sheet pile, H=4.5119
Figure (4-53): 3D/2D ratios for the exit gradient for different
K _s /K _b values, Scenario (2), No Sheet piles, H=4.5120
Figure (4-54): 3D/2D ratios for the exit gradient for different
Ks/Kb values, Scenario (2), Upstream Sheet pile, H=4.5120
Figure (4-55): Exit gradient distribution across the bed, Allowing
no flow through the two sides of the downstream canal, No sheet
piles, B=5m, H=4.5m

Figure (4-56): Exit gradient distribution across the bed, Allowing	
no flow through the two sides of the downstream canal, No sheet	
piles, B=50m, H=4.5m	121
Figure (5-1): Critical head calculated from the proposed model	
against critical head from the data for dune sand	130
Figure (5-2): Critical head calculated from the proposed model	
against critical head from the data for dune sand	130
Figure (5-3): Critical head calculated from the proposed model	
against critical head from the data for coarse sand	131

List of Tables

Table (2-1): Bligh's Thumb Rules for obtaining L/Hcrit (E)	
Sellmeijer (1988)	7
Table (2-2): The correspondence between seepage and flow of	
electric current	19
Table (3-1): The cases of hydraulic conductivities studied using	
SEEP2D for the stratified model and their effect on the head at	
point (e) at a depth de= 30m and the total flow rate	52
Table (4-1): The ratio between 3D exit gradient and 2D exit	
gradient at centerline and sides of the apron for different H/B	
values	86
Table (4-2): Uplift distribution under the apron for the studied	
widths of the structure (at centerline) and the 2D model, H=4.5 m	87
Table (4-3): Uplift distribution under the apron for the studied	
widths of the structure (at sides) compared to the 2D model,	
H=4.5 m	87
Table (4-4): The ratio between 3D exit gradient and 2D exit	
gradient at centerline and sides of the apron for different H/B	
values, H=4.5 m	89
Table (4-5): Uplift distribution under the apron for the studied	
widths of the structure (at centerline) and the 2D model, H=4.5 m	89
Table (4-6): Uplift distribution under the apron for the studied	
widths of the structure (at sides) compared to the 2D model,	
H=4.5 m	90
Table (5-1) Critical head versus porosity observations for	
different types of sand, reported by Weijers and Sellmeijer	
(1993)	128
Table (5-2) Comparing results of the two models according to	
	128
Note: Herit represents ic since the length of experiment is 1m	128
Table (5-3): porosity data and values of porosity term (N) for the	
three different types of sand	129

NOTATIONS

- B = Width of apron [L]
- d = Particle size [L].
- d₁ = Depth of upstream cutoff from its point of intersection with the apron to its toe level [L].
- d₂ = Depth of downstream cutoff from its point of intersectionwith the apron to its toe level [L].
- d_e = Depth of point (e) under the downstream bed [L].
- d_e/T = Relative depth of point (e) [Dimensionless].
- e = Any point located on the critical (exit) section along the whole thickness of pervious stratum (T) under the apron.
- f = Coefficient of friction.
- $g = Gravitational acceleration [LT^{-2}].$
- h = Head difference between upstream and downstream sides of the apron [L].
- h_e = Piezometric head at point (e) [L].
- h_e/h = Average relative piezometric head at point (e) [Dimensionless].
- H = Head acting on the structure [L].
- H_{crit} = Critical head [L].
- h_f = Head loss due to friction [L].