

"A Study of the Relation between Iron Status and Brain Function in Experimental Animals"

Thesis Submitted by

Radwa Wahid Mouhamed Elnagar

(B.Sc., Biochemistry and Nutrition, 2007) In partial fulfillment for Master degree in science (M.Sc) Biochemistry and Nutrition

Supervisors

Prof. Dr. Tahany El-Sayed Kholief

Professor of Biochemistry Department of Biochemistry and Nutrition

Prof. Dr. Fares Khairy Ahmed

Professor of Biochemistry and Nutrition Department of Biochemistry and Nutrition

Dr. Amal Ashmawy Ahmed

Lecturer in Biochemistry and Nutrition Department of Biochemistry and Nutrition

(2014)

سورة البقرة الآية: ٢٢

I'd like to sincerely thank almighty **Allah** for all his grants that he bestowed on me.

I truly acknowledge the valuable time, patience, support of my supervisory team. I'm deeply grateful **Prof. Dr. Tahani Elsayed Kholeif**, Professor of Biochemistry, Department of Biochemistry and Nutrition, Women's Faculty, Ain Shams University for her valuable supervision, great help, guidance and for continuous encouragement. I am sure that no words can satisfy her right.

I gratefully acknowledge the sincere advice and guidance of **Prof. Dr. Fares Khairy Ahmed**, Professor of Biochemistry and Nutrition, Department of Biochemistry and Nutrition, Women's Faculty, Ain Shams University.

I acknowledge deeply the help and support of **Dr. Amal Ashmawy Ahmed**, Lecturer in Biochemistry and Nutrition,
Department of Biochemistry and Nutrition, Women's Faculty, Ain
Shams University.

With great pleasure, I would like to express my sincere gratitude to the staff members of Biochemistry and Nutrition Department, Women's Faculty, Ain Shams University.

I'd like to present my sincere thankfulness to my deceased father and my dear mother, for their great role in my life and their numerous sacrifices for me. Many thanks for my brother Ahmed and sister Kholoud for their support.

Last but not least, I'd like to express my deepest gratitude to my husband, Ahmed Gouda, for his patience and tolerance over the study years. Ahmed I could not be able to finish this work without your support. Thank you for being with me and for your appreciated sacrifices.

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	V
Abstract	i
Introduction	1
Aim of the work	6
Review of literature	7
	,
Materials, Subjects and Methods	60
•Materials	60
•Subjects and methods	61
•Biochemical analysis	64
Blood assays	64
Serum biochemical assays	64
-Determination of serum iron concentration	64
-Determination of serum total iron binding capacity	66
-Determination of serum ferritin concentration	67
- Determination of serum transferrin concentration	69
- Determination of serum transferrin saturation	71
Brain biochemical assays	71
- Determination of brain iron concentration	71
- Determination of brain total iron binding capacity	73
- Determination of brain ferritin concentration	74
- Determination of brain tranferrin concentration	76
- Determination of brain tranferrin saturation	78
- Determination of brain dopamine	78
- Determination of brain serotonin	83

88
88
113
135
158
164
166

List of Abbreviations

AD : Alzheimer's disease BBB : Blood-brain barrier

BCB : Blood-cerebrospinal fluid barrier

BER : Base excision repair
CA1 : Cornu Ammonis area 1
CN : Control normal group
CNS : Central nervous system

COMT : Catechol O-methyl-transferase

CSF : Cerebrospinal fluid

DA : Dopamine

DMT : Divalent metal transporterDMT1 : Divalent metal transporter 1

EDTA : Ethylene-Diamine Tetra-Acetic acid ELISA : Enzyme-linked immunosorbent assay

FBN : Ferroportin

FtMt : intramitochondrial ferritin GABA : Gamma-aminobutyric acid

HCP : Heme carrier protein

HP : Hippocampus
IA : Iron accumulation
ID : Iron deficiency

iDNA : Iron deficiency without anaemia

IL : Iron-overload

IRE : Iron Response Element
 IRPs : Iron regulatory proteins
 L-DOPA : L-dihydroxyphenylalanine
 Lfr : Lactotransferrin receptor

MAO : Monoamine oxidase

MCH : Mean corpuscular hemoglobin

MCHC : Corpuscular hemoglobin concentration

MCV : Mean corpuscular volume

mPTP : Mitochondrial permeability transition pore

List of Abbreviations (Cont.)

MRI : Magnetic resonance imaging

MTP1 : Metal transporter 1

NBIA : Neurodegeneration with brain Fe accumulationNIBSC : National Institute for Biological Standards and

Control

OS : Oxidative stress
PD : Parkinson's disease
PEG : Polyethylene Glycol
PFC : Prefrontal cortex
PKA : Protein kinase A

PMSF : Phenylmethylsulphonyl fluoride

PP2A : protein phosphatase 2A ROS : Reactive oxygen species TfR : Transferrin receptors TH : Tyrosine hydroxylase

TIBC : Total iron binding capacity
TMB : Tetra-methyl Benzidine

USRDA : U.S. Recommended Daily Allowance

WHO : World Health Organization

 β -TT : β -thalassemia trait

List of tables

Table No.	Title	Page
(1)	Major proteins involving iron regulation.	15
(2)	Composition of the balanced diet (AIN-93G).	60
(3)	Levels of hemoglobin, hematocrit and red blood cells count in different experimental groups.	89
(4)	Levels of red cell indices, mean corpuscular hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin concentration in different experimental groups.	93
(5)	Levels of serum iron, total iron binding capacity and ferritin in different experimental groups.	97
(6)	Levels of serum transferrin and % of transferrin saturation in different experimental groups.	101
(7)	Levels of brain iron, total iron binding capacity and ferritin in different experimental groups.	104
(8)	Levels of brain transferrin and % of transferrin saturation in different experimental groups.	108
(9)	Levels of brain serotonin and dopamine in different experimental groups.	111
(10)	Levels of hemoglobin, hematocrit and red blood cells count in human groups.	114

List of tables (Cont.)

Table No.	Title	Page
(11)	Levels of red blood cells indices, mean corpuscular hemoglobin, mean	118
	corpuscular volume and mean corpuscular hemoglobin concentration in	
	human groups.	
	Levels of serum iron, total iron binding	
(12)	capacity and ferritin in human groups.	122
(13)	Levels of serum transferrin and % of transferrin saturation concentration in human groups.	126
(14)	Levels of serum serotonin and dopamine in human groups.	129

List of Figures

Figure No.	Title	Page
(1)	Fe and mitochondria oxidative stress.	10
(2)	Mechanisms of intestinal Fe uptake.	19
(3)	Iron metabolism pathways in neurons.	31
(4)	The brain anatomy.	33
(5)	Coronal cross-section of the brain.	34
(6)	Nerve cells.	35
(7)	Synthesis of dopamine.	38
(8)	Synthesis of serotonin.	39
(9)	Chemistry of labile iron pool in the neuron.	51
(10)	Hemoglobin concentration (Hb) in experimental groups.	90
(11)	Hematocrit value (Hct) in experimental groups.	90
(12)	Red blood cells count (RBCs) in experimental groups.	91
(13)	Mean corpuscular hemoglobin (MCH) in experimental groups.	94
(14)	Mean corpuscular volume (MCV) in experimental groups	94
(15)	Mean corpuscular hemoglobin concentration (MCHC) in experimental groups	95
(16)	Serum iron concentration (Fe) in experimental groups.	98
(17)	Serum total iron binding capacity (TIBC) in experimental groups.	98

List of Figures (Cont.)

Figure No.	Title	Page
(18)	Serum ferritin concentration in experimental groups.	99
(19)	Serum transferrin concentration (Tf) in experimental groups.	102
(20)	Serum transferrin saturation (Tf%) in experimental groups.	102
(21)	Brain iron concentration (Fe) in experimental groups.	105
(22)	Brain total iron binding capacity (TIBC) in experimental groups.	105
(23)	Brain ferritin concentration in experimental groups.	106
(24)	Brain transferrin concentration (Tf) in experimental groups.	109
(25)	Brain transferrin saturation (Tf%) in experimental groups.	109
(26)	Brain serotonin concentration in experimental groups.	112
(27)	Brain dopamine concentration in experimental groups.	112
(28)	Hemoglobin concentration (Hb) in human groups under investigation.	115
(29)	Hematocrit value (Hct) in human groups under investigation.	115
(30)	Red blood cells (RBCs) count in human groups under investigation.	116
(31)	Mean corpuscular hemoglobin (MCH) in human groups under investigation.	119
(32)	Mean corpuscular volume (MCV) in human groups under investigation.	119

List of Figures (Cont.)

Figure	Dist of Figures (cont.)	-
No.	Title	Page
(33)	Mean corpuscular hemoglobin	120
	cocentration (MCHC) in human groups	
	under investigation.	
(34)	Serum iron concentration (Fe) in human	123
	groups under investigation.	
(35)	Serum total iron binding capacity	123
	(TIBC) in human groups under	
	investigation.	
(36)	Serum ferritin concentration in human	124
	groups under investigation.	
(37)	Serum transferrin concentration (Tf) in	127
	human groups under investigation	
(38)	Serum transferrin saturation (Tf%) in	127
	human groups under investigation.	
(39)	Serum serotonin concentration in human	130
	groups under investigation.	
(40)	Serum dopamine concentration in human	130
	groups under investigation.	
(41)	Scatter dots showing the correlation	131
	between serum iron concentration and	
	serum ferritin concentration (A); serum	
	transferrin concentration (B); among	
	different experimental groups.	
(42)	Scatter dots showing the correlation	132
	between serum iron concentration and	
	brain iron concentration (A); brain	
	serotonin concentration (B); brain	
	dopamine concentration (C); among	
	different experimental groups.	

List of Figures (Cont.)

Figure No.	Title	Page
(43)	dots showing the correlation between brain iron concentration and brain ferritin concentration (A); brain transferrin concentration (B); brain serotonin concentration (C); brain dopamine concentration (D); among different experimental groups.	133
(44)	Scatter dots showing the correlation between serum iron concentration and serum ferritin concentration (A); serum transferrin concentration (B); serum serotonin concentration (C); serum dopamine concentration (D); ; among human groups.	134

Abstract

Iron is the most important element in the body, essential for almost all types of cells, including brain cells. Iron deficiency in children is associated with retardation in growth and cognitive development, and the effects on cognition may be irreversible, even with treatment. Excess iron has also been associated with neurological disease, especially in reference to the increased iron content in the brains of Alzheimer's disease and parkinson's disease patients. This study was designed to evaluate the effects of dietary iron deficiency and iron load on brain function. We conducted two studies on animal and human to determine the effect of iron status on brain iron, total iron binding capacity, ferritin, transferrin, transferrin saturation, dopamine and serotonin.

In animal study, sixty three male weanling albino rats Sprague-Dawely strain were assigned to one of seven dietary treatments. Groups (1 and 2): iron-adequate groups, control normal (CN), rats were fed on the basal balanced diet containing 35 mg Fe/kg diet for 21 and 28 days, respectively. Groups (3 and 4): iron-deficient groups (ID), rats were fed on the basal diet modified to contain 3 mg Fe/kg diet for 21 and 28 days, respectively. Group (5): iron-repletion group (Repl.), rats were fed on the iron-deficient (ID) diet for 21 days followed by an iron-adequate, control normal (CN) diet for one week. Groups (6 and 7): iron-load groups (IL), rats were fed on the basal diet modified to contain 250 mg Fe/kg diet for 21 and 28 days, respectively.

Data showed that, dietary iron deficiency led to significant decrease in the levels of iron, ferritin, and % of transferrin saturation and significant increase in the TIBC and transferrin in the serum and brain of iron-deficient rats as compared to iron-adequate rats (control). Moreover, iron deficiency produced significant decrease in the measured hematological indices. On the other hand, the levels of serotonin and dopamine in the brain of iron-deficient rats were significantly decreased. Levels of iron, ferritin and % of transferrin saturation in the serum and brain tended to be greater for the iron-load rats than control normal rats, however, TIBC and transferrin exhibited the opposite trend. Hemoglobin, hematocrit and red blood cells count and hematological indices rapidly returned to be near the normal in the rats that were irondeficient for 3 weeks and subsequently repleted with iron for one week. Results also suggest that, iron-repletion for one week in the irondeficient rats may help reduce the deleterious effects due to iron deficiency for 3 weeks through increased iron, ferritin, and % of transferrin saturation levels and decreased TIBC and transferrin levels in the serum and brain, as well as, increased brain serotonin and dopamine levels as compared to iron-deficient rats.

In human study, a total number of twenty seven Egyptian male children with an age range of 7-15 years, the chosen cases included three groups. Control normal group (CN): hemoglobin, 11-12.8 g/dl (Group 1). Iron- deficient group (ID): hemoglobin, 8-9.5 g/dl (Group 2). Iron-overload group (IL): hemoglobin, 6-8 g/dl (thalassemic group) (Group 3). Studies in human with iron deficiency anaemia or iron overload thalassemia revealed significant decrease in the hematological parameters (hemoglobin, hematocrit and red blood cells count) when compared to control group. Results showed that iron deficiency anaemia significantly increased red blood cell indices, serum TIBC and transferrin and significantly decreased serum iron content, % of transferrin saturation, serotonin and dopamine and non-significantly decreased serum ferritin levels. A significant increase in the serum iron content, ferritin, % of transferrin saturation, serotonin and dopamine, while a significant decrease in serum TIBC and transferrin levels were observed in the iron-overload thalassemic childerns as compared with the levels recorded in the control group.

It was concluded that iron status largely affect brain iron, ferritin, transferrin, transferrin saturation, serotonin and dopamine especially in early life. Therefore, iron is essential for normal brain function and development.

Key words: *iron deficiency* • *iron load* • *brain iron* • *serotonin* • *dopamine* • *rats* • *humans*