

Effect of Reinforcement by Nano-Zirconia on the Supporting Structures and Fracture Resistance of Lower Overdenture Implant Supported Denture Base

Thesis

Submitted to the Faculty of Dentistry, Ain Shams
University, in partial fulfilment of the requirements of
the Doctoral Degree in Oral and Maxillo-Facial
Prosthodontics

By

Ayman Sherif Mahmoud Fateen

B.D.S Ain Shams University (2002) M.D.S Azhar University (2010)

Faculty of Dentistry
Ain Shams University
2016

بسم الله الرحمن الرحيم

وقالوا الحكمد ولله الذي هدكنا لهذا الله ومَا كُنّا لِنَهْ تَدِي هَدُكُ لَوْلَا أَنْ هَدَكَا الله الله ومَا كُنّا لِنَهْ تَدِي لَوْلَا أَنْ هَدَكَا الله الله ومَا كُنّا لِنَهْ تَدِي لَوْلَا أَنْ هَدَكَا الله الله عَمَا كُنّا لِنَهْ تَدِي لَوْلَا أَنْ هَدَكَا الله عَلَيْهِ الله عَمَا كُنّا لِنَهْ تَدِي لَوْلَا أَنْ هَدَكَا الله عَلَيْهِ الله عَلَيْهُ الله عَلَيْهِ الله عَلَيْهُ الله عَلَيْهِ عَلَيْهِ الله عَلَيْهُ الله عَلَيْهُ الله عَلَيْهُ الله عَلَيْهُ الله عَلَيْهِ الله عَلَيْهُ الله عَلَيْهِ الله عَلَيْهُ الله عَلَيْهُ الله عَلَيْهُ الله عَلَيْهِ الله عَلَيْهِ الله عَلَيْهِ الله عَلَيْهِ الله عَلَيْهِ الله عَلَيْهِ عَلَيْهِ الله عَلَيْهِ عَلَيْهِ عَلَيْهِ الله عَلَيْهِ عَلَيْ

صدق الله العظيم الأعراف (٤٣)

Supervisors

Dr/ Fatma El-Zahraa Awad Sayed

Professor of Prosthodontics
Former Vice Dean of Student Affairs
Faculty of Dentistry
Ain Shams University

Dr/ Rami Maher Ghali

Associate Professor of Prosthodontics Faculty of Dentistry Ain Shams University

ACKNOWLEDGMENT

First I would like to thank **ALLAH** for giving me the strength, faith and persistence to accomplish this study.

I am greatly indebted and appreciate very much my supervisor and mentor **Prof. Fatma El-zaharaa Awad**, Prof. of Prosthodontics, Ain Shams University for her tremendous and valuable support, kind and understanding spirit throughout the study.

My sincere appreciation also goes to **Dr. Rami Maher Ghali**, Associate Prof. of Prosthodontics, Ain Shams University for his valuable guidance, assistance and cooperation in every possible way in order to make this study a very well done achievement.

Last but not least I would like to thank all members of Prosthodontic Department, Faculty of Dentistry, Ain Shams University for their sincere advice and constant encouragement.

تأثيراستخدام النانو زيركونيا في تدعيم قاعدة الاطقم السفلية المحمولة على غرسات على مقاومة القاعدة للككسر وعلى الانسجة الداعمة للأطقم

رسالة مقدمة الى كلية طب اللأسنان – جامعة عين شمس توطئة للحصول على درجة الدكتوراه في الأستعاضة الصناعية للفم والوجه و الفكين

مقدمتامن

الطبيب/ أيمن شريف محمود فطين

بكالوريوس طب و جراحة الفم و الأسنان ٢٠٠٢ ـ جامعة عين شمس ماجيستير الأستعاضة الصناعية للفم و الوجه و الفكين ٢٠١٠ ـ جامعة الأزهر

> كلية طب الأسنان جامعة عين شمس ٢٠١٦

المشرفون

ا. د / فاطمة الزهراء عوض سيد

أستاذ الإستعاضة الصناعية وكيل الكلية الأسبق كلية طب الأسنان جامعة عين شمس

أ.م د/ رامي ماهر غالي

أستاذ مساعد قسم الإستعاضة الصناعية كلية طب الأسنان جامعة عين شمس

CONTENTS

		Page
LIST	OF TABLES	VII
LIST	OF FIGURES	VIII
INTRODUCTION		1
REVIEW OF LITERATURE		3
I.	Edentulism	3
II.	Management of Compromised Mandibular Ridge	6
1.	Prosthetic management	6
2.	Surgical management	7
3.	Implants placement	8
III.	Dental Implants	8
>	Advantages of implant retained overdentures	10
>	Disadvantages of implant retained overdentures	12
>	Osseointegration of dental implants	13
>	Factors affecting implant success	15
IV.	Narrow Diameter Implants	21
	Indications and advantages of mini dental implants	22
	Disadvantages of mini dental implants	24

V. Implant Surface Structure	25
Implant macro structure	25
Implant micro structure	26
VI. Abutment Height	28
VII. Reinforcement of Acrylic Resin Denture Bases	30
VIII. Zirconia Reinforcement Material	35
IX. Radiographic Techniques for Implant Evaluation	37
Conventional radiographs	37
Specialized radiographic imaging	39
AIM OF THE STUDY	
MATERIALS AND METHODS	
RESULTS	74
DISCUSSION	
CONCLUSIONS	95
SUMMARY	
REFERENCES	98
ARABIC SUMMARY	-

LIST OF TABLES

Table. No.	Title	Page
(1)	Mean values (mm), Standard deviation and Paired t test of peri-implant bone height loss for group I patients during the follow up period	
(2)	Mean values (mm), Standard deviation and Paired t test of peri-implant bone height loss for group II patients during the follow up period	
(3)	Mean values (mm), Standard deviation and Paired t test of peri-implant bone height loss in patients with non-reinforced versus nano ZrO ₂ reinforced acrylic overdentures studied groups during the follow up period.	
(4)	Mean value, Standard deviation and P value for maximum load at denture fracture of non-reinforced and nano ZrO2 reinforced acrylic dentures	

LIST OF FIGURES

Fig. No.	Title	Page
1.	Mandibular edentulous ridge	46
2.	Primary impression	47
3.	Pre-operative panoramic radiograph	48
4.	Secondary impression	49
5.	ZrO ₂ nano powder	51
6.	Heat cured acrylic resin reinforced by nano ZrO_2 powder in flask.	51
7.	Mettler electric balance	52
8.	Desired amount of nano ZrO2 powder	52
9.	Silane coupling agent	53
10.	Magnetic stirrer	53
11.	Probe sonication apparatus	54
12.	Screw type one piece mini implant	54
13.	Radiographic markers on lower dentures	55
14.	CBCT for a patient wearing denture	56
15.	Denture scan	57
16.	Planning of the surgical guide	57
17.	Virtual placement of four mini implants	58

Fig. No.	Title	Page
18.	Surgical guide	58
19.	Surgical kit	59
20.	Surgical guide tried in patient's mouth	59
21.	Surgical guide anchored in place	60
22.	Tissue punch	60
23.	Flapless tissue punch	61
24.	Implant drilling	61
25.	Implants placed in proposed implant sites	62
26.	Immediate post-operative view	62
27.	Panoramic radiograph after implants were inserted	63
28.	Metal housing	64
29.	Modified lower complete denture to include four metal housings	64
30.	Metal housing with rubber o-ring inserted in place	65
31.	Liquidam gingival barrier	65
32.	Undercuts blocked out using liquidam	66
33.	Self cure acrylic resin added to the modification spaces	67
34.	Metal housing with rubber o-ring inserted in denture fitting surface	67

Fig. No.	Title	Page
35.	Digital panoramic radiograph after implants insertion	68
36.	Marginal bone height measurements	69
37.	Modified epoxy resin cast	70
38.	Universal testing machine	71
39.	Fractured heat cure resin (un-reinforced) denture	72
40.	Nano ZrO ₂ reinforced acrylic denture	72
41.	Bar chart for peri-implant bone height loss for patients having acrylic resin overdentures	75
42.	Bar chart for peri-implant bone height loss for patients having acrylic resin reinforced overdentures	76
43.	Bar chart for peri-implant bone height loss in patients with non-reinforced versus nano ZrO2 reinforced acrylic overdentures studied groups during the follow up period	
44.	Bar chart for load at fracture of non-reinforced and ZrO2 reinforced acrylic dentures	80

Introduction

The prosthetic management of the edentulous patient has long been a major challenge for prosthodontics. Maxillary and mandibular dentures have been the traditional standard for providing care for edentulous patients. However, most of the patients are unsatisfied with their mandibular dentures, most probably due to retention and stability problems together with discomfort.

The rehabilitation of edentulous patients with implant-retained overdenture offers considerable functional and psychological advantages. It has been shown that the two implant supported mandibular overdenture provides significant improvement of treatment outcomes as compared to conventional dentures. Implant supported overdentures improve masticatory function and proprioception. It reduces the rate of bone resorption, therefore, maintaining occlusion and vertical dimension. (1)

The diameter of standard root form implant is 3.75mm requiring at least 6mm of bone in the facio-lingual direction. Recently, root form small diameter mini-implants ranging in diameter from 1.8mm to slightly more than 2mm have been used to support conventional dentures with atrophied mandible without the need for bone grafting.

Recently, prosthetic rehabilitation with mini-implant has become an accepted treatment modality because of the high success rates. It is highly indicated when inadequate width of bone is present for placement of standard diameter implants as in knife-edge ridges. (2)

The use of mini implants has been suggested in order to reduce trauma compared to standard-sized implants. They are placed with minimal invasive surgery and can be immediately loaded. Mini-implants have the added advantages of reduced bleeding, decreased post operative discomfort and shortened healing time. However, the decreased diameter of mini implants increases the risk of implant fracture due to implant over loading. It was thus recommended to increase the number of implants to improve initial stability. (3)

Despite advantages of overdentures, denture base fracture is a common disadvantage with overdentures due to the space occupied by the abutments and the retentive elements of the denture, leaving a comparatively weak denture base. Thus, acrylic resin denture base reinforcement adjacent to abutments can reduce strain and prevent deformation and fracture of overdentures. (4)

Attempts have been made to modify Polymethyl methacrylate resin to improve the fracture resistance of denture bases. The use of high strength resin, wire reinforcement and adding various fiber fillers have been proposed. (5)

Recently, much attention has been directed toward the incorporation of inorganic nanoparticles into acrylic resin bases. One of the most recent introductions to the dental ceramics is zirconia due to its biocompatibility, improved mechanical properties and its esthetic white color. It thus seemed beneficial to enhance the fracture resistance of implant supported and retained overdenture bases by incorporating zirconia oxide nano particles.

However, the dental literature lacks information concerning the effect of nano zirconia oxide reinforced overdenture base on peri-implant bone loss and on overdenture base fracture. Hence, this study was proposed in an attempt to clarify the efficiency of nano zirconia oxide in the reinforcement of mini-implant supported and retained overdenture bases.

Review of Literature

I- Edentulism

Edentulism, defined as total tooth loss, is a debilitating and irreversible disease. (6)

Although the prevalence of complete tooth loss has declined over the last decade, edentulism remains a major disease worldwide, especially among older adults. Studies showed that edentulism is closely associated with socioeconomic factors and is more prevalent in poor populations. Other factors contributing to the prevalence of complete tooth loss are age, education, access to dental care, dentist/population ratios, and insurance coverage. (7-9)

Tooth loss is mainly attributed to dental caries and gum disease. However, factors that lead to tooth extraction are not always dental in origin. The complex interactions between dental diseases, tendency to use dental care, dental attitude and affordability of non-extraction treatment have been related to the incidence of tooth loss. (10)

Partial edentulism is defined as partial loss of teeth. It leads to several drawbacks including clinical challenges and lifestyle compromises. Clinically, partial edentulism results in drifting and tilting of adjacent teeth, super eruption of opposing teeth, altered speech, changes in facial appearance and tempero-mandibular joint disorders. Also, the loss and continuing degradation of the alveolar bone, the adjacent teeth and also the supporting structures will influence the difficulty to achieve an adequate restoration in a partially edentulous patient. On the lifestyle compromises, partial edentulism