

جامعة عين شمس كايــــة التربيــــة قســــم الفيزيـاء

دراسة تأثير إضافة الجاليوم علي بعض الخواص الفيزيائية للأغشية الرقيقة من سيلينيوم- تليريوم

رسالـــة مقدمة للحصول علي درجة الماجستير في إعداد المعلم في العلوم (فيزياء).

> مقدمة من أحمدمحمدعبده الرباطي

> > إلى

قســم الفيزياء - كليـة التربيـة ـ جامعة عين شمس

7.11

Ain shams University Faculty of Education Physics Department

Study the effect of Ga addition on some physical properties of Se-Te thin films

Thesis
Submitted for the degree of Msc of
Physics (Teacher preparation)

By

Ahmed Mohammed Abdo Alrebati

To

Physics Department
Faculty of Education
Ain Shams University
Cairo, Egypt
2011

المنعة ترغين شينيس

Ain shams University Faculty of Education Physics Department

Name: Ahmed Mohammed Abdo Alrebati

Title of Thesis:

Study the effect of Ga addition on some physical properties of Se-Te thin films

Supervised By:

Approved

Prof.Dr. Naema Abd El Aal Hegab

Prof. of solid state physics - Faculty of Education - Ain Shams University

Dr. Ibrahim Sayed Mohammed Hussein

Lecturer, Department of Physics - Faculty of Education - Ain Shams University

Dr. Amira Mohammed Shakra

Lecturer, Department of Physics - Faculty of Education - Ain Shams University

ABSTRACT

ABSTRACT

Name: Ahmed Mohammed Abdo Alrebati

Title:

Study the effect of Ga addition on some physical properties of Se-Te thin films

Submitted to:

Physics Department, Faculty of Education, Ain Shams University.

This study is devoted to investigate the effect of Ga addition on the electrical and thermal properties of Se- Te films.

Thermal measurement includes temperature and heating rate dependence of T_g , T_p , glass transition activation energy E_g and crystallization activation energy E_c by different approximations for the investigated compositions.

The dc electrical measurements include the temperature and thickness dependence of dc electrical conductivity σ_{dc} for the investigated compositions.

The switching measurements include the static I-V characteristic curves, the temperature and thickness dependences of the switching voltage and determination of the switching voltage activation energy (ε_{th}) and specifying the switching mechanism for the investigated compositions.

Ac measurements include ac electrical conductivty, dielectric constant and the dielectric loss as a function of frequency and temperature for the investigated compositions.

ACKNOWLEDGEMENT

Words fail to express my feeling to *Allah* for helping and reinforcement (الحمد لله رب العالمين).

The author wishes to thank Prof. Dr. N. A. Hegab for his kind valuable help, continuous supervision, relevant recommendations, offering facilities, and interpreting the results.

The author wishes to send his deepest thanks to Dr. I. S. Yahia and Dr. A. M. Shakra for the continuos guidance and appreciated efforts all through conducting the present research.

The author wishes to send his deepest thanks to Prof. Dr. S. A. Fayek (National Center for Radiation Research and Technology) for rendering facilities in some analysis.

The author emits his gratitude, for rendering facilities.

The Author sends all thanks to Prof. Dr. A. E. Bekheet for suggesting the point of research, rendering the advice and guidance.

Finally the author wishes to thank Prof. Dr. M.A. Afifi, Prof. Dr. M. Fadel. and all members of physics departement, Faculty of Education Ain Shams university for their help.

إهسداء

اهدي هذا الجهد المتواضع إلي:

وطني الذي ليس مثله وطنوفاءً بالجميل
روح أمي الطاهرةدعاءً ورحمة
والدي الحبيبحباً وتقديراً
روح جدتي الطاهرةدعاءً ورحمة
زوجتي الغالية وزهراتي إسراء وأمالحباً وحناناً
جميع أفراد أسرتيوداً واحتراماً وتقديراً
كل من أسدل لي معروفاً وأنار لي الطريقعرفاناً بالجميل
الباحثون في محراب العلمالعثون في محراب العلم

Contents	Page
List of Figures	1
List of Tables	10
Abstract	12
Introduction	13
	10
Chapter (1)	20
Theoretical background and literature review	
Amorphous semiconductors	20
1.1) Chalcogenide glasses.	20
I.2)Band models of amorphous semiconductors	21
a)Mott–Cohen, Fritzche and Ovshinsky model	21
b) Cohen, Fritzche, and Ovshinsky (CFO model)	23
c) Davis and Mott model	23
d) Marshall and Owen model	24
1.3) Defect states in chalcogenide glasses	25
1.4) Thermal properties	27
1.5) Theory of crystallization	28
1.5.1. Nucleation and Growth.	28
1.5.2. Rate equations for phase transformations.	30
1.6) Electrical conduction in amorphous semiconductors	32
(1.6.1)Dc conduction in amorphous semiconductors	32
(1.6.2) Ac conduction in amorphous semiconductors	35
Models for ac conduction.	39
(1) Quantum-mechanical tunneling (QMT model)	40
(2) Correlated barrier hopping of electrons (CBH model)	41
(a) Derivation of the ac conductivity arising from hopping within non-intimate valence alternating pairs (NVAP's)	41
(b) Derivation of the ac conductivity arising from hopping within intimate valence alternating pairs (IVAP's)	44

1.6.3) Dielectric properties of amorphous semiconductors 1.6.4) Dielectric loss in amorphous semiconductors	45 47
1.7) Switching and memory effects in amorphous semiconductors	49
Switching mechanisms	55
Memory mechanisms	55
Literature Review	57
Chapter (2)	
Experimental techniques	63
2.1) Preparation of of bulk samples	63
2.2)Preparation of thin film samples	65
a) Cleaning of of glass substrates	65
i)- Glass substrates	65
ii)- Pyrographite substrates	66
b)Evaporation technique	66
2.3) Methods for film thickness measurements	
The interferometric method.	68
2.4) Structural identification of the investigated	70
compositions.	
2.4.1) X-ray diffraction method	70
2.4.2)Energy dispersive x-ray analysis	70
2.4.3) Differential thermal analysis	70
2.5) Electrical properties measurements	73
2.5.1). Dc conductivity measurements.	73 74
2.5.2) Switching phenomenon measurements	7 4 75
2.5.3) Ac electrical measurements	78
(i) Ac conductivity $\sigma_{ac}(\omega)$.	78
(ii) Dielectric properties.	79

Chapter (3)	
Structural identification and kinetics of	
crystallization for a -Se ₇₅ $Te_{25-x}Ga_x(x=0, 5, 10)$	80
and 15) glassy system	
3.1) Structural identification	80
3.2. Differential thermal analysis (DTA)	85
3.2.1. Transition temperatures.	85
3.2.2. Kinetics of phase transformation	90
(i) The activation energy for glass transition (E_g)	90
(a) The Kissinger's formula	90
(b) Augis and Bennett formula	93
(c) The Mahadevan et al. approximation	93
(d)The Lasocka approximation	
	96
(ii) The activation energy for crystallization E_c and the	
order of the crystallization mechanism n	98
(a) The Kissinger's formula	98
(b) Augis and Bennett formula	99
(c)The Mahadevan et al. approximation	102
(d) Johnson, Mehl and Avrami	104

Chapter 4	400
Electrical and switching properties of	109
$\underline{Se_{75}Te_{25-x}Ga_x(x=0, 5, 10 \text{ and } 15)}$ amorphous films	
4.1.Dc electrical conductivity σ_{dc}	
4.1.1. Temperature dependence of the dc conductivity σ_{dc}	109
4.1.2 Thickness dependence of dc electrical	114
conductivity for the investigated compositions	
4.2. Switching properties of $Se_{75}Te_{25-x}Ga_x$ ($x = 0, 5, 10$ and 15) films	116
4.2.1. I-V characteristic curves.	116
4.2.2. Thickness dependence of the mean value of the switching voltage $\overline{V_{th}}$	117
4.2.3 Temperature dependence of the mean value	126
of the switching voltage $V_{\it th}$.	
Chapter 5	
Ac Conductivity and Dielectric Properties of	
$\underline{Se_{75}Te_{25-x}Ga_x}(x = 0, 5, 10 \text{ and } 15)$ amorphous films.	136
5.1.Ac conductivity of Se-Te-Ga system.	136
5.1.1. Frequency dependence of ac conductivity	136
5.1.2. Temperature dependence of ac conductivity.	143
5.2. Dielectric properties of $Se_{75}Te_{25-x}Ga_x$ films.	154
5.2.1. Frequency and temperature dependence of dielectric constant ε_1	154

5.2.2. Frequency and temperature dependence of the dielectric loss ε_2 .	165
Conclusion	183
Summary	187
References	190
Arabic summary	