

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTERICAL POWER AND MACHINES DEPARTMENT

CONFIGURATION MANAGEMENT OF ELECTRIC DISTRIBUTION NETWORKS EQUIPPED WITH DISTRIBUTED GENERATION

A Thesis Submitted In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In Electrical Engineering

BY

ENG. SALWA ALI AHMED EL BELAWY

M.Sc. in Electrical Power Engineering
Ain Shams University

SUPERVISED BY

PROF. DR. MOHAMMED ABD EL LATIF BADR

Professor of Electrical Engineering Faculty of Engineering Ain Shams University

PROF. DR. ALMOATAZ YOUSSEF ABDELAZIZ

Professor of Electrical Engineering Faculty of Engineering Ain Shams University

DR. HASSAN MOHAMED MAHMOUD

Managing Director of Information SystemsEgyptian Electricity Holding Company

Cairo, 2013

APPROVAL SHEET

For thesis with title

CONFIGURATION MANAGEMENT OF ELECTRIC DISTRIBUTION NETWORKS EQUIPPED WITH DISTRIBUTED GENERATION

Presented By

Eng. Salwa Ali Ahmed El Belawy

M.Sc. in Electrical Power Engineering
Ain Shams University

A Thesis Submitted
In Partial Fulfillment
of the Requirements for the Degree of **Doctor of Philosophy**In Electrical Engineering

Approved by

Prof. Dr. Mohammed Abd El Latif Badr

Electrical Engineering & Machines Department Faculty of Engineering Ain Shams University

Prof. Dr. Almoataz Youssef Abdelaziz

Electrical Engineering & Machines Department Faculty of Engineering Ain Shams University

Dr. Hassan M. Mahmoud

Managing Director of Information Systems Egyptian Electricity Holding Company

Date: / / 2013

EXAMINERS COMMITTEE

FOR THESIS WITH TITLE

I CONFIGURATION MANAGEMENT OF ELECTRIC DISTRIBUTION NETWORKS EQUIPPED WITH DISTRIBUTED GENERATION

Presented By

Eng. Salwa Ali Ahmed El Belawy

M.Sc. in Electrical Power Engineering
Ain Shams University

Submitted in partial fulfillment of the requirements for the degree Master of Science in Electrical Engineering

Has been approved by

1. Prof. Dr. Sherif Omar Farid

Professor of Electrical Engineering Faculty of Engineering Saskatchewan University, Canada

2.Prof. Dr. Mohamed Abd Elhameed Mostafa

Professor of Electrical Engineering Faculty of Engineering Ain Shams University

3.Prof. Dr. Mohammed Abd El Latif Badr

Professor of Electrical Engineering Faculty of Engineering Ain Shams University

4.Prof. Dr. Almoataz Youssef Abdelaziz

Professor of Electrical Engineering Faculty of Engineering Ain Shams University **Statement**

This thesis is submitted to Ain Shams University in partial

fulfillment of the requirements for PH.D Degree in Electrical

power Engineering.

The included work in this thesis has been carried out by the

author in the department of electrical power and machines

department, faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Name

: Salwa Ali Ahmed El Belawy

Signature:

Date

: /

/2013

iv

DEDICATION

Thesis PH.D is dedicated, to the spirit of my parents, to my beloved family, my brothers, my husband, my daughter Rabab and my son, Khaled.

ACKNOWLEDGMENTS

My Allah, I will give you thanks forever

First, and foremost, praise and thanks to Allah, the most Gracious, the Most Merciful, for helping me to accomplish this work.

I wish to express my deep appreciation and gratitude for all support and invaluable help during the preparation and information collection for this thesis, my supervisors Prof. Dr. Abd El Latief Badr, Prof. Dr. Almoataz Youssef Abdelaziz Professors of Electrical power engineering Department, Faculty of Engineering, Ain Shams University and Dr. Hassan M. Mahmoud Managing Director of Information Systems Egyptian Electricity Holding Company. Who had the major general rule and great effort in supervising this research, providing me with valuable remarks till it saw the light of day.

I would like to express my deep appreciation, for large amount of information in this thesis that would not be available without the help from the Egyptian Electricity Holding Company (EEHC), and Delta Electrical distribution Company.

I would like to express my deep appreciation to Dr. Mohamed Awad, eng. El Safty, Eng. Gaber Deswky Mostafa, Ms.Madeha Yassine, who extended all kind of co-operation for the completion of this work.

To my entire family, my husband, my daughters Rabab and Khaled who are my absolute happiness and supporting during my work.

Salwa Ali

ABSTRACT

CONFIGURATION MANAGEMENT OF ELECTRIC DISTRIBUTION NETWORKS EQUIPPED WITH DISTRIBUTED GENERATION

This thesis contains a strategy to management electrical energy of electrical distribution network. In order to develop the strategy, a model was constructed to simulate an electrical distribution network, and different parameters was included that help in estimation of technical losses, voltage drop and overload in medium voltage of electrical distribution network.

Due to the deregulation trend in electric power system networks, many factors have to be taken into consideration such as lack of supplying electric power, system reliability, power quality, electric system losses and voltage disturbance and profile problems. The excessive growing needs for electricity force electrical researchers to implement new approaches through the electric system. Introducing Distributed Generation (DG) in the distribution network is considered to be a promising new approach to solve these problems. DG is capable of providing some, or all of the required power for the demand increase and at the same time improves system's performance.

This work focused on introducing a new approach to generate power in the distribution network and in addition enhance the distribution system's voltage profile and reduce the electric system losses and overload equipped with DG in the distribution system. Results of computer simulations are presented to confirm the proposed ideas. This work investigates the loss-related statistics of one specific power system market. The magnitude and characteristics of energy losses as

well as the distribution companies' measures to curb such losses were included in the information presented here. Other topics were discussed include the estimated power losses, voltage drop and overload in an electrical distribution network to compromise with DG. The strategy are applied on two different networks; the first network is the 66/11 kV (Gharb El Mahala substation feeding four distribution panels (D.P)) and 66/11 kV (Shoubra substation (S/ST) feeding El Zeraa D.P). The two network segments consist of different network busses delivering electrical energy to different customers. In these networks, the load supplied by for one bus is a varying load for different times especially at maximum load conditions.

The planning of MV distribution networks involves loops configuration design, location of medium-voltage (MV) / low-voltage (LV) substations, and minimum cost. In this work, the suggested strategy takes into account different conductor sizes, voltage drop and conductor capacity constraints, power losses in the network, and concentrated loads in the electrical distribution network. The existing planning methods of distribution network are designed for cases where a voltage drop & overloads limit the utilization of the network. The proposed planning method takes into account the combined voltage drop and rise of loads based on the worst network conditions, and proposes two complementary planning considerations for distribution networks.

The results of the present research work have proven that consequence of maneuvers equipped with DG includes three main measures, these are: minimization of overload, voltage drop and power losses. A suitable constrained multi objective formulation of the maneuvers

problem is therefore used for aiming at the minimal power losses operation and new approach to solve these problems by using DG technique, providing some the verification of safety at distribution substations and the load balancing among the MV/LV transformers while keeping the voltage profile regular. The application carried out uses an algorithm whose performance is based on multi criteria objective evolutionary algorithm. this method's main advantage is the accurate treatment of voltage and current constraints, including the effect of control action.

TABLE OF CONTENTS

APPROVAL S	SHEE	Γ		i
ABSTRACT				ii
ACKNOWLEDGMENT				vii
TABLE OF C	ONTE	ENTS		ix
LIST OF FIGU	JRES			X
LIST OF TAB	LE			xiii
LIST OF ABE	BREVI	ATION	S	v
CHAPTER 1	INTRODUCTION			
	1.1	Genera	al	1
	1.2	Thesis	Background	1
	1.3	Distrib	outed Energy Planning	2
	1.4	Thesis	Objectives	3
	1.5	Thesis	Outline	5
CHAPTER 2	LITERATURE REVIEW			
	2.1	Genera	al	9
	2.2	Recon	figuration of distribution network	10
		2.2.1	Heuristic optimization methods	13
		2.2.2	Branch Exchange Methods	14
		2.2.3	Transshipment	16
		2.2.4	Simulated Annealing	17
		2.2.5	Neural Networks	18
		2.2.6	Discrete Ascent Optimal Programming	18
		2.2.7	Genetic Algorithms	20
	2.3	Distrib	outed generation	21
	2.4	The D	istributed Generation Technologies	21
		2.4.1	Internal Combustion Engines	23
		2.4.2	Micro turbines	23
		2.4.3	Photovoltaic	25

	T	ABLE OF CONTENTS (cont.)		
		2.4.4 Fuel Cells	26	
		2.4.5 Wind turbines	27	
	2.6	Advantages of using DG units	29	
	2.7	Reconfiguration Packages	30	
		2.7.1 CYMDIST- CYME software package	30	
		2.7.2 DESS configuration optimization module	31	
	2.8	Electric Power in Egypt	34	
		28.1 Commercial activities	36	
CHAPTER 3	FORMULATION OF OPTIMIZATION STRATEG BASED ON RECONFIGURATION ALGORITHMS 31. General			
	3.2		37 40	
	3.3	General Equations Present Network Modeling Method		
	3.4	General Data Entry		
		Software Used for Medium Voltage Network Studies		
	3.5 3.6	•	44 46	
	3.0	Evolutionary Algorithms for Multi-Criterion Optimization 3.6.1 Brief description of evolutionary algorithm	46	
	3.7	Application of Genetic Algorithm	48	
		3.7.1 Modified genetic algorithm	49	
	3.8	Mathematical model	50	
	3.9	Proposed reconfiguration method		
	3.10	Simulation results	59	
CHAPTER4	RECONFIGURATION OPTIMIZATION ALGORITHMS FOR DISTRIBUTION NETWORK EQUIPED WITH DG			
	4.1	General	65	
	4.2	DG Impacts and Benefits	67	
		4.2.1 DG Electrical Interconnection	69	
	4.3	Distributed generation Resources Planning	71	
	4.4	Power Systems Planning	71	

TABLE OF CONTENTS (cont.)

		4.4.1	Defining the Planning Problem	73
		4.4.2	Planning Goals, Objectives and Constraints	75
		4.4.3	Solving the Planning Problem	77
		4.4.4	Selection and Evaluation of Alternatives	77
		4.4.5	Selection of the Best Alternative	79
	4.5	Multi-ob	jective Optimization	81
		4.5.1	Pareto Optimality Problem Formulation	84
	4.6	Distribut	ted Energy Resources Planning	86
		4.6.1	Problem Formulation	86
		4.6.2	Genetic mode	86
CHAPTER 5	GENE	OPTIMAL ERATION	GORITHMS PERFORMANCES ASSESSM LOCATION AND SIZING OF DISTRIBU	JTED
	5.1	General		94
	5.2		and Structure	95
		5.2.1	Platform	95
		5.2.2	Structure	96
		5.2.3	Input and Output Information	98
	5.3		Variables and Chromosome Structure	98
		5.3.1	Encoding	99
		5.3.2	Fitness Function	100
		5.3.3	Selection Methods	100
		5.3.4	Crossover Mechanism	100
		5.3.5	Mutation Mechanisms	101
		5.3.6	Stopping Criteria	101
	5.4	Impact Reconfig	of DG on Distribution Feeder guration	102
CHAPTER6	CASE DEVE	STUDI ELOPED M	ES FOR THE VERIFICATION OF IODELS	THE
	6.1	General		105
	6.2	Distribut	tion network planning criteria	105

TABLE OF CONTENTS (cont.)

	6.3	Network initial state analyses	106	
	6.4	First sample network	108	
	6.5	PRAO Program Execution on the Selected Sample Networks		
		6.5.1 Existing Situation of North Delta Egypt first sample network	122	
		6.5.2 Configuration network Without distributed generation (DG)	124	
		6.5.3 Developments network equipped with distributed generation	128	
	6.6	Second Sample Models	138	
		6.6.1 Configuration network Without distributed generation (DG)	142	
		6.6.2 Developments network equipped with distributed generation	144	
	6.7	Conclusion	150	
CHAPTER 7	CON	CLUSIONS AND RESULTS SUMMARY		
	7.1	General	153	
		7.1.1 Conclusions from the mathematical formulation technique	153	
		7.1.2 Conclusions from integration of network maneuver with distributed generation applications		
		7.1.3 Conclusions from the case studies	156	
	7.2	Future Work	158	
	7.3	Thesis summary	160	
REFERENCE	S		161	
PUBLICATIO	NS		169	
APPENDICES	S			
Appendix A	Existing situation of first sample network and The best solution existing situation of First sample network by maneuver			
Appendix B	Devel	Development of first sample network by (distributed generatio DG1+ applying maneuver)		
Appendix C	Devel	Development of first sample network by (distributed generation [(DG1)+DG2+DG3]+ applying maneuver)		
Appendix D	Appli	Application more maneuver to achieve optimization and manage of MV network		
Appendix E	Secon	Second sample network with all operations of maneuvers plus DG units (same steps in the first sample network		

LIST OF FIGURES

1.1	Summary of DG applications	3
1.2	Chapter Interrelation	5
2.1	An electric power system	9
2.2	A Distributed Electricity System	10
2.3	A simple distribution system	12
2.4	Linearized feeder transshipment costs	16
2.5	Schematic diagram of dual shaft micro turbine design	24
2.6	Solar PV panel (courtesy of NREL)	25
2.7	PEM fuel cell schematic	26
2.8	Wind Turbine System	28
2.9	CYMDIST- CYME software	31
2.10	DESS configuration optimization	32
2.11	Pss TM e optimal power flow	33
2.12	Number of customers in Distribution Companies	35
3.1	Relation between energy and power	40
3.2	Flowchart of working principle of the modified genetic algorithms	45
3.3	Three feeder distribution system	55
3.4	Individual configuration representation	52
3.5	Initial population algorithm	54
3.6	A flowchart of Selection algorithm	55
3.7	A flowchart of Crossover	57
3.8	Evolution of the real power losses - 69 bus system	61
3.9	Evolution of the real power losses - 135 bus system	61
4.1	Structures of Power Systems	66
4.2	Isolated, stand alone sources	69
4.3	Isolated systems with automatic transfer	69
4.4	DG connected to the network with no power export	70
4.5	DG grid interconnected with power export	70
4.6	Grid interconnected with power export- utility side	70
4.7	Five steps of Planning (adapted from	72
4.8	Pareto-set for a Two-objective Optimization	79
4.9	Two-objective Optimization - No conflict	80
4.10	Basic Genetic Algorithms	81
4.11	Preference-based Optimization	82
4.12	"Ideal" Multi-objective Optimization	83
4.13	Requirements of a Multi-objective Optimization Problem	85
4.14	Scheme for sample network structure	89

LIST OF FIGURES (cont.)

4.15	Branch lists of network attached graph (α and β) and the attached chromosome (g)	89
4.16	Branches obtained through decoding chromosome a	90
5.1	Planning Framework Structure	97
5.2	Chromosome encoding for one DG unit to be allocated	99
5.3	Single Line Diagram for three generators	103
5.4	Daily energy price variations	104
5.5	Daily load variations	104
6.1	Single line diagram of 66/11 kV Gharb El Mahalla substation	107
6.2	Single line diagrams for the network showing incoming and outgoing feeders for El Madina El Seneia DP.	109
6.3	Single line diagrams for the network showing incoming and outgoing feeders for Kafr El Sheikh DP.	113
6.4	Single line diagrams for the network showing incoming and outgoing feeders for Talaat Harb DP	117
6.5	Single line diagrams for the network showing incoming and outgoing feeders for Mostashfa El Sadr DP.	123
6.6	Existing situation-expected yearly outage duration	123
6.7	Relative loads, power loss and voltage drops of existing situation- expected yearly outage duration	123
6.8	Relative loads, power loss and voltage drops of existing situation	124
6.9	Characteristics for optimization of 203 node sample system	126
6.10	Final Pareto Front solutions	127
6.11	Relative loads, power loss and voltage drops after	127
6.12	Most of the installed base are units less than 2.0 MW in size	129
6.13	Relative loads, power loss and voltage drops after DG1(5MW)	130
6.14	Relative loads, power loss and voltage drops after DG2 (5MW)	131
6.15	Relative loads, power loss and voltage drops after DG3 (2MW)	132
6.16	Relative loads, power loss and voltage drops after maneuver plus three DGs	134
6.17	Characteristics for optimization of 203 node sample system after DGs without maneuver	135
6.18	Characteristics for optimization of 203 node sample system after DGs with maneuver	135
6.19	Final Pareto Front solutions	136
6.20	Characteristics for reducing overload after DGs with maneuver	136
6.21	Characteristics for reducing power loss after DGs with maneuver	137
6.22	Characteristics for reducing voltage drop after DGs with maneuver	137
6.23	Single line diagrams for the network showing incoming and outgoing feeders for El Zeraa DP	139
6.24	Existing situation-expected yearly outage duration	141