Types and Complications of Bariatric Surgery

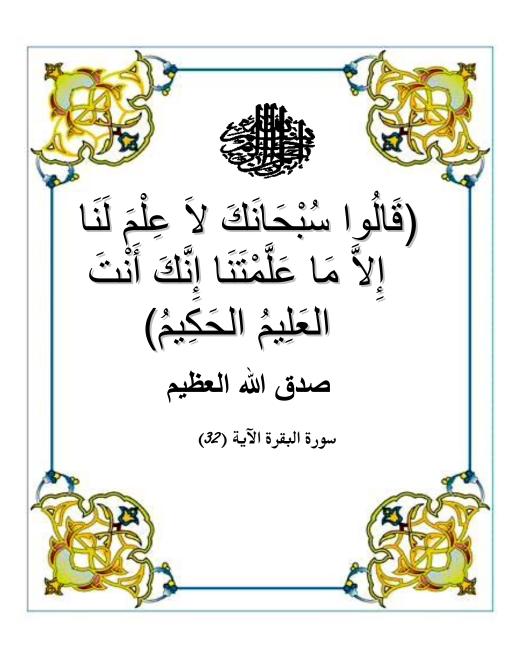
An Essay

Submitted for partial fulfillment of Master Degree In General Surgery

By
Karim Al Amir Mohamed Tawfik
(M.B., B.CH.)

Under Supervision of

Prof. Dr/ Hesham Adel Alaa El Dine
Professor of General Surgery
Ain Shams University


Dr/ Wafi Fouad Salib
Assistant Prof. of General Surgery
Ain Shams University

Dr/ Ramy Mikhael Nageeb

Lecturer of General Surgery

Ain Shams University

Faculty of Medicine
Ain Shams University
2013

Acknowledgement

Words stand short when coming to express my deep gratitude and great thanks to my professor and supervisor, **Prof. Dr.**, **Hesham Adel Alaa El Dine** Professor of General Surgery, Faculty of Medicine, Ain Shams University. Whatever said, will never fulfill my gratitude to him. His continuous encouragement and sincere advice were the main factor to complete this work in its final form. I'm actually indebted to him with my thanks.

I'm delighted also to introduce my deep respect and thanks to **Prof. Dr.**, **Wafi Fouad Salib** Assistant Professor of General surgery, Faculty of medicine, Ain shams University. His kind care gave me the confidence to complete my work.

I'm also very delighted to express my deep gratitude to **Dr. Ramy Mikhael Nageeb** Lecturer of, General Surgery Faculty of medicine, Ain Shams University, for his kindness, encouragement, and cooperation in all steps of this work.

I would like to extent my deepest gratitude to my parents and all my family members who standed by me with all their faithful support and unlimited kindness through out the whole work. Apart from them nothing would be accomplished.

List of Contents

Page
1. Introduction and Aim of the Work1
2. Review of literature
• Chapter (1): Anatomy 4
• Chapter (2): Pathophysiology 24
• Chapter (3): Indications
• Chaper (4): Types of surgery 50
• Chapter (5): Complications85
3. Summery141
4. References145
5. Arabic Summery

<u>list of Figures</u>

Figure No.	Comment	Page No.
Fig. (1)	Structures situated on the posterior abdominal wall behind the stomach	7
Fig. (2)	The arterial supply of the stomach	8
Fig. (3)	Tributaries of the portal vein.	10
Fig. (4)	Lymph drainage of the stomach.	11
Fig. (5)	Distribution of the anterior and posterior vagal trunks within the abdomen	11
Fig. (6)	Posterior relations of the duodenum and the pancreas	14
Fig. (7)	Superior mesenteric artery and its branches	22
Fig.(8)	The adjust gastric band	53
Fig. (9)	Lap-Band placed at the very top of stomach	53
Fig. (10)	Lap band surgical technique	55
Fig. (11)	Wedge laparoscopic vertical banded gastroplasty	58
Fig. (12)	Mason-like laparoscopic vertical banded gastroplasty	58
Fig. (13)	Opening the omental bursa	61

Fig. (14)	Insertion of a 32-french gastric tube in the stomach	61
Fig. (15)	The Laparoscopic Biliopancreatic Diversion	65
Fig. (16)	Schematic of the duodenal switch operation as described by Hess	68
Fig. (17)	Gastric bypass.	70
Fig. (18)	The ligament of Treitz is identified	71
Fig. (19)	Division of the jejunum.	71
Fig. (20)	The ultrasonic shears create small bowel enterotomies.	72
Fig. (21)	Upward traction on the shaft of the linear stapler	72
Fig. (22)	Retraction for the hepatogastric dissection	73
Fig. (23)	The first bite of stomach is divided with the linear stapler.	73
Fig. (24)	the connection of the stapler with the tip of the anvil	74
Fig. (25)	The anvil in position after traversing the stomach	75
Fig. (26)	The circular stapler is prepared to fire.	75
Fig. (27)	Diagrammatic illustration of laparoscopic mini-gastric bypass.	80

Fig. (28)	Diagram and intra operative picture of completed GCP procedure	83
Fig. (29)	Endoscopic image of plicated gastric greater curvature	83
Fig. (30)	Endoscopic retroflex views of the gastro- esophageal junction demonstrating 180° erosion of band	107
Fig. (31)	Laparoscopic photograph of a dilated pouch proximal to a slipped band	110
Fig. (32)	View of gastrojejunostomy leak	122
Fig. (33)	Endoscopic view of gastrojejunal anastomosis of RYGB patient who developed overt GI bleeding	128
Fig. (34)	Endoscopic view of gastrojejunal anastomosis of RYGB patient who developed overt GI bleeding	129
Fig. (35)	Endoscopic view of a marginal ulcer at the gastrojejunal anastomosis	134
Fig. (36)	An internal hernia can potentially occur through either two or three defects.	135
Fig. (37)	CT scan image of internal hernia through Peterson's space with dilated jejunum	136

<u>List of Tables</u>

Table No.	Comment	Page No.
Table (1)	Summary of patient selection criteria	46
Table (2)	The Edmonton obesity staging system	48
Table (3)	Various sites of absorption of nutrients in the body	91
Table (4)	Short and long terms complications after primary MGB	139

List of Abbreviations

CN X Cranial nerve number 10

ARDS Acute respiratory distress syndrome

ASO Acute Stoma Obstruction

AT adipose tissue

ATMs adipose tissue macrophages

BIB BioEnterics Intragastric Balloon

BMI Body mass index

BPD bilio-pancreatic diversion

BPL biliopancreatic limb

CL common limb

CT computed tomography

CV Cardiovascular

DEXA dual energy X-ray absorptiometry

DNA Deoxy ribo nucleic acidDVT Deep venous thrombosisECG Electro cardiography

EEA Enteroenterostomy anastomosisEOSS Edmonton Obesity Staging System

ERV expiratory reserve volume

EWL excess weight lost

F French

FRC Functional residual capacity gastric bypass procedure

GC greater curvature

GEA gastroentero-anastomosis

GERD gastro esophageal reflux disease

GI	Gastro intestinal
GIA	gastrointestinal anastomosis
GIB	gastrointestinal bleeding
GIP	Glucose-Dependent Insulinotropic Peptide
GLP-1	Glucagon-like peptide-1
HDL	high density lipoprotein
IAP	Intra abdominal pressure
IBW	ideal body weight
ICV ICV	ileocecal valve
IF .	intrinsic factor
IU	International unit
JGA	juxta-glomerular apparatus
JI	jejunoileal
LAGB	Laparoscopic adjustable gastric band
LAGD	Laparoscopic Biliopancreatic Diversion with
LBPD-S	Duodenal Switch
LC	lesser curvature
LDL	low-density lipoprotein
LGCP	Laparoscopic greater curvature plication
<i>LGP</i>	laparoscopic gastric plication
LRYGB	laparoscopic Roux-en-Y gastric bypass
LSG	Laparoscopic sleeve gastrectomy
LVBG	laparoscopic Vertical banded gastroplasty
MCP	monocyte chemotacticprotein
MGB	Mini-gastric bypass
MO	Morbid obesity
NALD	nonalcoholic liver disease
<i>NASH</i>	non-alcoholic steatohepatitis
NIH	National Institutes of Health
NSAIDs	Non steroidal anti-inflammatory drugs
OSA	obstructive sleep apnea

PE	pulmonary embolism
PPI	proton pump inhibitors
<i>pSEMS</i>	partially covered self-expanding metal stents
PTH	parathyroid hormone
PYY	Peptide YY
RDI	respiratory disturbance index
RNA	Ribo nucleic acid
SAS	Sleep Apnea Syndrome
T2DM	Type 2 diabetes mellitus
TIBC	Total Iron Binding Capacity
UDCA	ursodesoxycholic acid
UGH	Upper gastro intestinal hemorrhage
UGI	Upper gastro intestinal
VBG	Vertical banded gastroplasty
VSG	Vertical sleeve gastrectomy
WAT	White adipose tissue
WLS	weight loss surgery
WT	working trocar

INTRODUCTION

Obesity is a serious worldwide health problem. It has been shown to predispose to various diseases, particularly cardiovascular disease, diabetes mellitus, sleep apnea, and osteoarthritis (X. Li et al., 2008).

The increasing prevalence of obesity-related morbidities represents a significant health problem, especially for individuals in modern Western societies (*Yermilov et al.*, 2009).

The Society of American Gastrointestinal Endoscopic Surgeons (SAGES) therefore recommends that surgical therapy should be considered for individuals who:

- Have a body mass index (BMI) $> 40 \text{ kg/m}^2$
- Have a BMI >35kg/m² with significant co morbidities

The indications for laparoscopic treatment of obesity are the same as for open Surgery (*J D Adair et al.*, 2008).

Bariatric operations are classified as purely malabsorptive, purely restrictive, or combined malabsorptiverestrictive (*D E Swartz et al.*, 2008).

Restrictive procedures include; laparoscopic adjustable gastric band (LAGB), laparoscopic sleeve gastrectomy (LSG) and vertical banded gastroplasty (VBG). Malabsorptive

procedures include; bilio-pancreatic diversion (BPD) and bilio-pancreatic diversion with duodenal switch (BPD-DS). The laparoscopic Roux-en-Y gastric bypass (LRYGB) is considered a combination of both restriction and mild mal-absorption (*H.A. Khwaja*, 2010).

Early complications of these operations can include bleeding, infection, leaks from the site where the intestines are sewn together, and blood clots in the legs that can progress to the lungs and heart (*Niddk*, 2009).

Examples of complications that may occur later include strictures (narrowing of the sites where the intestine is joined) and hernias (*Niddk*, 2009).

Bariatric surgery is a metabolic surgery designed to produce malnutrition. Energy deficit occurs due to low food intake food intolerance, and nutrient malabsorption (*Ampadi Thampi et al.*, 2008).

Approximately 30% of bariatric surgery patients will develop a nutrition-related complication, typically a macronutrient or micronutrient deficiency or both, at some point following their operation (*Fujioka et al.*, 2011).

AIM OF WORK

The aim of this essay is discussion of different types and procedures of morbid obesity surgery and their complications.

CHAPTER (1): ANATOMY ANATOMY OF THE STOMACH

The stomach is roughly J-shaped, although its size and shape vary considerably. It tends to be high and transverse in the obese short subject and to be elongated in the asthenic individual. (*Harold Ellis*, 2006)

The stomach has two surfaces—the anterior and posterior; two curvatures — the greater and lesser; and two orifices the cardia and pylorus. (*Harold Ellis*, 2006)

The surface of the stomach facing the front is the anterior wall of the stomach that facing the back is the posterior wall of the stomach. The upper border of the stomach at the junction of the anterior and posterior walls is concave, shorter, and forms the lesser curvature of the stomach. The lower border forming the lower junction of the walls of the stomach is convex and longer and is the greater curvature of the stomach. (*R.D.Sinelnikov*, 2003)

PARTS OF THE STOMACH:

The stomach is divided by arbitrary lines drawn on its external surface into a fundus, body, pyloric antrum and pylorus. The internal appearance and microstructure of these regions varies to some degree. The fundus is dome shaped and