VALUE OF E-CADHERIN AND DESMIN IMMUNOCYTOCHEMISTRY IN DISTINGUISHING METASTATIC ADENOCARCINOMA FROM REACTIVE MESOTHELIAL CELLS IN SEROUS EFFUSIONS

Thesis

Submitted for partial fulfillment of MSc. Degree in Pathology

By

Mona Mohamed Mamdouh Abdel Fattah Abdel Ghany

(MBBCh.)

Faculty of Medicine- Cairo University

Supervisors

Prof. Dr. Gina Assaad Assaad Nakhla

Professor of Pathology

Faculty of Medicine- Cairo University

Ass. Prof. Dr. Neveen Samir Tahoun

Associate Professor of Pathology

National Cancer Institute- Cairo University

Dr. Maha ElSayed Salama

Lecturer of Pathology

Faculty of Medicine- Cairo University

Faculty of Medicine - Cairo University 2015

Acknowledgment

First of all, thanks to "Allah" who granted me the ability to accomplish this work.

I would like to express my deepest gratitude and highest appreciation to **Prof. Dr. Gina Assaad Assaad**Nakhla, Professor of Pathology, for her continuous encouragement and unlimited help. She offered me much of her kind advises and scarified much of her valuable time to complete this work.

I am extremely grateful to **Dr. Neveen Samir Tahoun**, Assistant professor of Pathology, for her kind supervision, continuous encouragement and guidance.

I would also like to express my sincere thanks to **Dr. Maha ElSayed Salama**, Lecturer of Pathology, for her Kind help and guidance throughout the preparation of this work.

I wish to express my appreciation to the staff members, especially Dr. Nesreen Hafez and technicians in the Pathology Department, National Cancer Institute, for their help.

Last but not least, a big thank you to my family especially my parents for their support.

<u>Abstract</u>

One of the problems in studying serous effusion cytological samples is differentiation of reactive mesothelial cells from metastatic adenocarcinoma cells. In this study, the immunohistochemical diagnostic value of E-cadherin and desmin markers in differentiation of these 2 groups of cells was studied.

Material and methods: Fifty cases of serous effusions were examined on Papanicolaou-stained and Diff quick-stained smears as well as Paraffinembedded cell blocks. 30 cases were diagnosed as metastatic adenocarcinoma and 20 cases were diagnosed as reactive mesothelial hyperplasia with typical cytomorphologic features. All the cases were studied for E-cadherin and desmin immunoreactivity.

Results: The all cases of metastatic adenocarcinoma reacted to E-cadherin and only 3 cases reacted to desmin, whereas among the 20 cases of reactive mesothelial cell hyperplasia, 18 cases stained with desmin and only one case was stained with E-cadherin. Considering the staining of the E-cadherin and desmin under conditions that the cells were stained with E-cadherin but not with desmin, sensitivity=90%, specificity=100%, positive predictive value (PPV)=100%, negative predictive value (NPV)=87% and accuracy=94% to identify metastatic adenocarcinoma. While under conditions that the cells were with stained desmin but not with E-cadherin, sensitivity=85%, specificity=100%, positive predictive value (PPV)=100%, negative predictive value (NPV)=90% and accuracy= 94% to identify reactive mesothelial cell hyperplasia.

Conclusion: Employing this short panel can be helpful for better differentiation of adenocarcinoma and reactive mesothelial cells in serous effusions.

Key words:

Adenocarcinoma, reactive mesothelial cell, E-cadherin, desmin, immunohistochemistry, serous effusion

Table of Contents

Content	Page
List of Abbreviations	I
List of Tables	III
List of Charts	IV
List of Figures	V
Introduction	1
Aim of the Work	3
Review of Literature	4
Material and Methods	53
Results	57
Discussion	84
Conclusion	92
Recommendations	93
Summary	94
References	97
Arabic summary	

List Of Abbreviation

AIDS	Acquired immunodeficiency syndrome
ALCL	Anaplastic large cell lymphoma
B72-3	Cell membrane associated antigen
BER-EP4	Anti-human epithelial antigen
BG-8	Blood group-8
СВ	Cell Block
CD	Cluster of differentiation
CDH1	Cadherin 1, type 1, E-cadherin (epithelial)
DLBL	Diffuse large B-cell lymphoma
EBER	EBV-encoded RNA
EBV	Epstein-Barr virus
ECAD	E-cadherin (Epithelial cadherin)
EPS	Epithelioid sarcomas
GFAP	Glial fibrillary acidic protein
HBME1	Anti- human mesothelial cell (Hector Battifora Mesothelial -1)
H & E	Hematoxylin and eosin
HHV-8	Human herpes virus 8
HIV	Human immunodeficiency virus
ICC	Immunocytochmistry
IFPs	Intermediate filament proteins
LE	Lupus erythematosus
ME1	Malic enzyme 1

MOC-31	Epithelial surface antigen
MPNSTs	Malignant peripheral nerve sheath tumors
N/C	Nuclear /cytoplasmic
N-cadherin	Neuronal cadherin
NFPs	Neurofilament proteins
OB-cadherin	Osteoblastic cadherin
OV-CAR3	Human ovarian cell line
P-cadherin	placental cadherin
PAL	Pyothorax associated lymphoma
Pap	Papanicolaou
PEL	Primary effusion lymphoma
PENs	Pancreatic endocrine neoplasms
PTLD	Post-transplant lymphoproliferative disorder
SLE	Systemic lupus erythematosus
R-cadherin	Retinal cadherin

List of Tables

Table No.	Description	Page
	TABLE IN REVIEW	
1	The most Common Tumors that cause Malignant Effusions as regard Site and Sex	29
	TABLE IN RESULTS	
۲	Age variables among the studied cases	59
٣	Sex distribution among the studied cases according to diagnosis	60
٤	The site of serous fluid examined among the studied cases	61
٥	The primary tumors in metastatic adenocarcinoma group	62
۲	The primary diseases in reactive mesothelial hyperplasia group	63
٧	The aspect of serous fluid examined among the studied cases	64
٨	The colour of serous fluid examined among the studied cases	65
٩	E-cadherin immunostaining among the studied cases	66
١.	The intensity of expression of E-cadherin among the (31) immunostaining positive cases.	67
11	The localization of expression of E-cadherin among the (31) immunostaining positive cases.	68
١٢	Desmin immunostaining among the 50 studied cases	69
١٣	The intensity of expression of Desmin among the (21) immunostaining positive cases	70
١ ٤	The combined use of both E-cadherin and desmin in effusion	71

List of Charts

Figure No.	Description	Page No.
	CHARTS IN RESULTS	
Chart (1):	The diagnosis of the study cases	58

<u>List of Figures</u>

Figure No.	Description	Page No.
Fig. (1):	Mesothelial cells dispersed as isolated cells and	72
	occasional small clusters. Smears of pleural effusion	
Fig. (2):	Mesothelial cells arranged in discohesive groups.	73
	Smears of ascitic effusion	
Fig. (3):	Mesothelial cells. Cell block of peritoneal effusion	74
Fig. (4):	Desmin staining intensity and pattern in reactive	75
	mesothelial cells. Cell block of peritoneal effusion.	
Fig. (5):	Metastatic adenocarcinoma. Smears of ascitic effusion	76
Fig. (6):	Metastatic mucinous adenocarcinoma. Smears of	77
	ascitic effusion	
Fig. (7):	Metastatic adenocarcinoma. Cell block preparation of	78
	Rt. Sided pleural effusion	
Fig. (8):	E-cadherin staining intensity and pattern in malignant	79
	cells. Cell block of peritoneal effusion	
Fig. (9):	CASE (1) Benign peritoneal effusion in a case of benign	80
	ovarian serous cystadenoma, positive immunoreactive	
	for desmin while negative for E-cadherin	
Fig. (10):	CASE (2) Malignant peritoneal effusion in a case of	81
	ovarian papillary serous cystadenocarcinoma, positive	
	immunoreactive for E-cadherin while negative for	
	desmin	
Fig. (11):	CASE (3) Malignant peritoneal effusion in a case of	82
	ovarian mucinous cystadenocarcinoma, positive	
	immunoreactive for E-cadherin while negative for	
	desmin	

Fig. (12):	CASE (4) Benign peritoneal effusion in a case of of neuroblastoma showing reactive mesothelial cell	83
	hyperplasia, positive for both E-cadherin and desmin.	
Fig. (13):	CASE (5) Malignant peritoneal effusion in a case of ovarian serous cystadenocarcinoma, positive for both E-cadherin and desmin.	84

INTRODUCTION

The major purpose of cytological examination of serous effusion is to determine whether malignant cells are present or not. This is an extremely important task since in most cases the presence of malignant cells in effusion indicates an advanced or terminal stage of malignancy and usually associated with poor survival (Naylor et al., 2008). Adenocarcinomas are by far the commonest type of neoplastic cells to be found in serous effusion. Some tumors have a greater tendency than others to spread to the pleura, pericardium or peritoneum. The most common metastatic adenocarcinomas in pleura are lung cancer in men and breast cancer in women while those in peritoneum are gastrointestinal tract cancers in men and ovarian cancer in women (Cibas, 2014).

Whenever the serous membranes are irritated in a process of inflammation or longstanding effusion, mesothelial cells proliferate, shed in the fluid and show morphological changes in cytoplasm and nucleus including enlargement of the nucleus, binucleation, multinucleation or mitotic figures. In some cases, morphological differentiations of reactive mesothelial cells from adenocarcinoma in serous effusions are extremely difficult (**Lisa et al., 2003**).

Adoption of complementary methods will increase diagnostic accuracy in distinguishing between reactive mesothelial and adenocarcinoma cells. Nowadays, immunocytochemistry (ICC) is one of the most suggested methods (**Rahmani et al., 2011**). Employing the immunocytochemical methods, the markers have been used separately or in multiple panels, to help differentiation of the reactive mesothelial cells and metastatic adenocarcinoma has been investigated in many studies, in

some of which the markers have been found to be helpful (Metzgeroth et al., 2007) & (Murugan et al., 2009).

E-Cadherin and desmin may be used for discriminating between reactive mesothelial cells and adenocarcinoma cells obtained from serosal cavity fluids. E-cadherin is a member of family called intracellular calcium-dependent adhesion molecules: a transmembrane protein-expressed in epithelial cells. Its extracellular terminal amino acid binds to the same structure of neighboring homotypic cells where calcium ion exists, mediating the epithelial cell-cell adhesion (Malle et al., 2005).

Many studies have shown alterations in E-cadherin expression in many types of cancer specifically "lobular carcinoma of the breast and poorly differentiated gastric carcinomas". Theoretically, only the exfoliated cells originating from epithelial tissues can express E-cadherin, therefore, detection of E-cadherin expression is helpful for determining cells from epithelia. Because under normal conditions, epithelial cells are rarely present in benign effusions, the appearance of epithelial cells in effusions means a metastasis of carcinoma developed from epithelia (**He et al., 2004**).

The intermediate filament protein desmin is a known marker for smooth and skeletal muscle differentiation (**Dabbs**, **2006**). Several studies have reported positive staining of benign mesothelial cells in serous fluid and tissue sections for desmin (**King et al.**, **2006**). The exact etiology for expression of desmin in mesothelial cells is not known; however, the multipotential role of mesothelial cells with possible muscle differentiation and coexpression of desmin have been proposed by some studies (**Bolen et al.**, **1986**).