THE EFFECTS OF VITAMIN D ON INSULIN RESISTANCE AND NERVE CONDUCTION VELOCITY IN MALE RATS WITH TYPE 2 DIABETES

Thesis

Submitted in partial fulfillment for the master degree in Physiology
(Basic Medical Sciences)

By

Noha Ibrahim Gomaa

(M.B., B.Ch.)

Demonstrator of Physiology Faculty of Medicine- Cairo University

Under supervision of

Prof. Dr. Laila Ahmed El-Sayed

Professor of Physiology
Faculty of Medicine- Cairo University

Dr. Ola Mostafa Tork

Assistant Prof. of Physiology
Faculty of Medicine -Cairo University

Dr. Hanan Seddiek

Lecturer of Physiology
Faculty of Medicine- Cairo University

Faculty of Medicine
Cairo University
2016

Acknowledgement

First and above all, I deeply thank **Allah** who helped and guided me throughout my life.

I am deeply indebted to Professor **Dr. Laila Ahmed El-Sayed**, Prof. of Physiology, Faculty of Medicine, Cairo University for her kind and meticulous supervision. I would like to express my appreciation for her continous advice and encouragement, not only during the period of this work, but since my early years in the university.

Special thanks and appreciation are extended to **Dr. Ola Mostafa Tork**, Assistant Prof. of Physiology, Faculty of Medicine, Cairo University for her guidance and remarkable suggestions throughout my work.

I would like to express my sincere thanks to **Dr. Hanan**Seddiek, Lecturer of Physiology, Faculty of Medicine, Cairo

University for her patient and appreciable help and the valuable
time she offered me throughout this work.

I would also like to express my gratitude to Professor **Dr**. **Laila Ahmed Rashed**, Prof. of Biochemistry, Faculty of Medicine, Cairo University for her expert guidance and great help she offered me in this work.

Finally, no words can express my thanks and gratitude to my dear husband for his great support and encouragement in every step I take in my life. I really appreciate his valuable advice and his patience with the kids while finishing this work.

Dedicated to

My beloved Dad, Mum,

Husband

U

My children Salma, Talia & Marwan

For their support & patience

<u>Abstract</u>

Background: There is an emerging evidence of the neuroprotective roles for vitamin D. However its role in the pathogenesis of type 2 diabetes (T2 DM) and its exact mechanism of action in neuroprotection are still uncertain. The present work was designed to examine the effect of vitamin D supplementation on insulin sensitivity and nerve conduction velocity with and without insulin treatment in diabetic model.

Methods: The study was conducted on 50 male adult rats. They were divided into five groups :Group 1:Control group, Group 2:Diabetic group, in which T2DM was induced; Group 3:Diabetic-insulin treated group in which diabetic rats were treated with insulin alone; Group 4:Diabetic -vitamin D treated group in which diabetic rats were treated with vitamin D alone and finally,Group 5:Diabetic with combined insulin and vitamin D treatment group. At the end of the experimental period, blood samples were taken from all animals of all groups for measurement of serum glucose & insulin, insulin resistance index (HOMA-IR),together with the oxidative stress marker : Malondialdehyde (MDA) and inflammatory markers: Interleukins 1β &10 (IL1β and IL10) . VDR gene expression in pancreatic (VDR-P) and sciatic nerve (VDR-N) tissues were estimated. In addition Nerve conduction velocity was performed on dissected sciatic nerve .

Results: Data showed a significant reduction of nerve conduction velocity of sciatic nerve together with increased insulin resistance in diabetic rats that paralleled increased MDA and IL1β and the decreased IL10. Administration of insulin, vitamin D alone or combined after induction of diabetes improved the previous changes. This improvement was accompanied with significant enhancement of VDR –P and VDR-N gene expression.

Conclusion: The improvement of insulin sensitivity and the neuroprotection induced by vitamin D supplementation in T2DM is related to restoration of VDR-P and VDR-N expression. Thus vitamin D could be a novel approach to lower neuropathic risk in diabetes.

Keywords:

Vitamin D receptor; 1,25-dihydroxyvitamin D3; Type2 diabetes mellitus, Insulin resistance, Nerve conduction velocity.

Contents

	Page
List of abbreviations	I
List of tables for Review of literature and Materials &	VI
methods	
List of figures for Review of literature and Materials &	VII
methods	
List of tables for Results	VIII
List of figures for Results	X
Introduction & Aim of the Work	1
Review of literature	3
Chapter 1:	3
Diabetes Mellitus	
Chapter 2:	23
Diabetic Neuropathy	
Chapter 3:	
Vitamin D	
Materials and Methods	63
Results	95
Discussion	120
Recommendations	137
Summary and Conclusions	138
References	144
Arabic summary	

List Of Abbreviations

1α,25(OH)2D3	1α,25(OH)2Di hydroxyvitamin D3
2HPP	Two hours post prandial
AGEs	Advanced glycemic end products
AIR	Acute insulin response
ANOVA	Analysis of variance
ARE	Antioxidant response element
BGP	Bone gamma carboxyglutamic acid protein
BMD	Bone mineral density
ВМІ	Body mass index
BNC	Bayonet Neill-concelman
CAPs	Compound action potentials
CGRP	Calcitonin gene related peptide
CIDP	Chronic inflammatory demyelinating polyneuropathy
COX	Cyclo-oxygenase
CVD	Cardiovascular disease
CY	Cytochrome
dATP	Deoxyadenosine triphosphate
DBP	Vitamin D binding protein
DCCT	Diabetic control and complication trial
dCTP	Deoxycytidine triphosphate
dGTP	Deoxyguanosine triphosphate
DI	Disposition index
DIN	Deutsches institute fur normung
DKA	Diabetic ketoacidosis
DM	Diabetes Mellitus
DN	Diabetic neuropathy
DNA	Deoxyribonucleic acid
dNTPS	Deoxynucleotide triphosphate

DPP	Diabetes prevention program
DRIs	Dietary reference intake
Drp1	Dynamin related protein
Drp1	Dyanamin related protein
DSPN	Distal symmetrical peripheral neuropathy
dTTP	Deoxythymidine triphosphate
EAE	Experimental autoimmune encephalomyelitis
EAR	Estimated average requirement
ELISA	Enzyme linked immunosorbent assay
EMG	Electromyography
FBG	Fasting blood glucose
FGF-23	Fibroblast growth factor twenty three
FOXO3	Forkhead protein
FPG	Fasting plasma glucose
GDNF	Glial cell derived neurotrophic factor
GENNID	Genetics of non-insulin dependent diabetes mellitus
GIP	Gastric inhibitory polypeptide
GLP-1	Glucagon like peptide one
GTC	Guanidine thiocyanate
HAART	High active antiretroviral treatment
HbA1C	Glycated haemoglobin
HFD	High-fat diet
HO-1	Hemoxygenase one
HOMA-IR	Homeostasis model assessment of insulin resistance
НХХО	Hypxanthine/xanthine oxidase system
IBD	Inflammatory bowel disease
IENF	Intra-epidermal nerve fiber
IFG	Impaired fasting glucose
IGI	Insulinogenic index
IGT	Impaired glucose tolerance

IL	Interleukin
iNOS	Inducible nitric oxide synthase
INS	Insulin
IOM	Institute of medicine
IRR	Insulin real risk
ISSI	Insulin secretion sensitivity index
LPO	Lipid peroxidation
MAPK	Mitogen activated protein kinase
MDA	Melondialdehyde
MMLV	Molony murine leukemia virus
NAD	Nicotinamide adenine dinucleotide
NADPH	Nicotinamide adenine dinucleotide phosphate
NCS	Nerve conduction studies
NCS	Nerve conduction studies
NCV	Nerve conduction velocity
NGF	Nerve growth factor
NPH	Neutral protamine Hagedorn
NQO1	Quinoneoxide reductase 1
Nr	Nuclear factor
Nrf	Nuclear factor
NT3	Neutrotrophin three
OGTT	Oral glucose tolerance test
Р	Probability
PAD	Peripheral arterial disease
PAD	Peripheral arterial disease
PARP	Poly(ADP-ribose)polymerase pathway
PARP	Poly(ADP-ribose) polymerase activity
PCR	Polymerase chain reaction
PKC	Protein kinase c
PL	Parometer logistic

PPAR	Peroxisome proliferation activated receptor
PTH	Parathyroid hormone
QST	Quantitative sensory testing
RCT	Randomized controlled trials
RDA	Recommended dietary allowance
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
rpm	Round per minute
RR	Rapid response
RXR	Retinoid X receptors
SC	Subcutaneous
SHR	Spontaneous hypertensive rats
SPF	Sun protection factor
SPPL	Osteoponin
STZ	Streptozotocin
SWMT	Semmes-Weinstein monofilament test
T1DM	Type one diabetes mellitus
T2DM	Type two diabetes mellitus
Taq	Thermos aquaticus
TBA	Thiobarbituric acid
TCA	Trichloracetic acid
TGF	Transforming growth factor
TGF	
	Transforming growth factor
TNF	Transforming growth factor Tumour necrosis factor
TNF TrKA	Transforming growth factor Tumour necrosis factor Tropomysin related kinase receptor
TNF TrKA TZD	Transforming growth factor Tumour necrosis factor Tropomysin related kinase receptor Thiazolidinedions
TNF TrKA TZD UPS	Transforming growth factor Tumour necrosis factor Tropomysin related kinase receptor Thiazolidinedions Ubiquitin- proteasome system
TNF TrKA TZD UPS UVB	Transforming growth factor Tumour necrosis factor Tropomysin related kinase receptor Thiazolidinedions Ubiquitin- proteasome system Ultraviolet B
TNF TrKA TZD UPS UVB VDDS	Transforming growth factor Tumour necrosis factor Tropomysin related kinase receptor Thiazolidinedions Ubiquitin- proteasome system Ultraviolet B Vitamin D deficiency syndrome

VDR-N	Vitamin D receptor gene in nerve tissue
VDR-P	Vitamin D receptor gene in pancreatic tissue
VPT	Vibration perception threshold
WC	Waist circumference
WHO	World Health Organisation

List Of Tables

In Review of literature and Materials & methods

Table No.	Title	Page
Table (1)	Diagnostic thresholds for diabetes and impaired glucose regulation	8
Table (2)	Classification of vitamin D group of molecules	47
Table (3)	Dietary, supplemental and pharmaceutical sources of vitamin D2 and D3.	49
Table (4)	Definitions of serum 25(OH) D.	55
Table (5)	Primer sequences used for real time –Polymerase Chain Reaction	86

List Of Figures

In Review of Literature and Materials & Methods

Figure No.	Title	Page
Figure (1)	Complex Pathogenesis of Type 2 Diabetes	14
Figure (2)	Macrovascular and microvascular complications of Diabetes Mellitus	16
Figure (3)	Polyol Pathway	26
Figure (4)	Structure of vitamin D3(cholecalciferol) and vitamin D2(ergocalciferol) and their precursors	46
Figure (5)	Metabolism of Vitamin D	46
Figure (6)	Causes and consequences of vitamin D deficiency	59
Figure (7)	Vitamin D Deficiency Syndrome,	60
Figure (8)	Standard curve of insulin	71
Figure (9)	Proper set up of recording and stimulating leads.	89
Figure (10)	Zoom window in overlay mode showing analysis procedure calculating conduction velocity.	92

Tables of Results

Table No.	Title	Page
Table (1)	Mean and standard deviatin of serum glucose, insulin,	96
	Malondialdehyde (MDA) and inflammatory markers:	
	Interleukins 1&10 (IL1 and IL10) Vitamine D gene	
	expression in (pancreatic and nerve tissues.) and nerve	
	conduction velocity in Control group (I).	
Table (2)	Mean and standard deviation of Serum glucose ,insulin,	97
	Malondialdehyde (MDA) and inflammatory markers:	
	Interleukins 1&10 (IL1 and IL10) Vitamine D gene	
	expression in (pancreatic and nerve tissues.) and nerve	
	conduction velocity in Diabetic group(II).	
Table (3)	Mean and standard deviation of serum glucose, insulin,	98
	Malondialdehyde (MDA) and inflammatory markers:	
	Interleukins 1&10 (IL1 and IL10) Vitamine D gene	
	expression in (pancreatic and nerve tissues.) and nerve	
	conduction velocity in Diabetes with insulin group(III).	
Table (4)	Mean and standard deviation of serum glucose, insulin,	99
	Malondialdehyde (MDA) and inflammatory markers:	
	Interleukins 1&10 (IL1 and IL10) Vitamine D gene	
	expression in (pancreatic and nerve tissues) and nerve	
	conduction velocity in Diabetes with vitamin D (IV).	
Table (5)	Mean and standard deviation of serum glucose ,insulin,	100
	Malondialdehyde (MDA) and inflammatory markers:	
	Interleukins 1&10 (IL1 and IL10) Vitamine D gene	
	expression in (pancreatic and nerve tissues.) and nerve	
	conduction velocity in Diabetes with insulin and vitamin	
	D (V).	

Table (6)	C comparison between the parameters measured in the	102
	control group gr (I) and those measured in Diabetic group	
	(II)	
Table (7)	Comparison between the parameters measured in the	104
	Diabetes group (II): and those measured in Insulin treated	
	group (III):	
Table (8)	Comparison between the parameters measured in the	106
	Diabetes group (g(II) and those measured in Vitamin D	
	group (IV):	
Table (9)	Comparison between the parameters measured in the	108
	Diabetes group (group II) and those measured in	
	insulin + Vitamin D group (V):	
Table (10)	Comparison between all groups in all parameters with	112
	their Mean ± SD	
Table (11)	Correlation between insulin and nerve conduction	118
	velocity in all groups	
Table (12)	Correlation between nerve conduction velocity and	119
	vitamin D receptor gene expression in sciatic nerve in all	
	groups	
Table (13)	Correlation between nerve conduction velocity and	119
	vitamin D receptor gene expression in sciatic nerve in	
	group (3) (diabetes+ insulin) only	

Figures of Results

Figure No.	Title	Page
Figure (1)	Comparisons of the levels of glucose in all studied	113
	groups.	
Figure (2)	Comparisons of the levels of insulin in all studied groups	113
Figure (3)	Comparisons of insulin sensitivity index: HOMA-IR in all	114
	studied groups	
Figure (4)	Comparisons of the levels of IL.1β in all studied groups	114
Figure (5)	Comparisons of the levels of IL.1β in all studied groups	115
Figure (6)	Comparisons of the levels of IL.10 in all studied groups	115
Figure (7)	Comparisons of the relative expression of vitamin D	116
	receptors in the pancreas of all studied groups.	
Figure (8)	Comparisons of the relative expression of vitamin D	116
	receptors in the sciatic nerve of all studied groups.	
Figure (9)	Comparisons of the nerve conduction velocity in all	117
	studied groups	
Figure (10)	Correlation between insulin and nerve conduction (NC)	118
	velocity in all groups. NC, nerve conduction.	
Figure (11)	Correlation between nerve conduction velocity and VDR	119
	gene expression in the nerve (b) in all groups. VDR,	
	vitamin D receptor in studied groups.	