Cerebral vasomotor Reactivity in border-zone infarcts; A Transcranial Doppler study

Thesis

Submitted for partial fulfillment of M.D degree in neurology

By

Shahinaz Mohamed Helmy Abd-allah

M.B., B.CH., M.Sc of Neuropsychiatry

Supervised by

Prof. Dr. Magd Fouad Zakaria

Professor of Neurology & Psychiatry

Faculty of medicine, Ain Shams University

Prof. Dr. Nevine Medhat El Nahas

Professor of Neurology & Psychiatry

Faculty of medicine, Ain Shams University

Prof. Dr. Naglaa Mohamed El-khayat

Professor of Neurology & psychiatry

Faculty of medicine, Ain Shams University

Prof. Dr. Lobna Mohammed El-Nabil

Professor of Neurology & Psychiatry

Faculty of medicine, Ain Shams University

Dr. Hossam Mahmmoud Afify

Lecturer of Neurology & psychiatry

Faculty of medicine, Ain shams university

Ain Shams University

مِن مِالْمُالِكُمُونِ الْكِمْ الْمُعَالِكِينِ مِ

انه هلا لا خانام الهالة " ميكمال ميلعال حتناً خاناً انتملا الم لاإ

صدق الله العظيم سورة البقرة

Acknowledgement

First and foremost, I feel always indebted to **Allah** the most kind and most merciful, as we owe to him for his great care and guidance in every step in our life, and who enabled me to accomplish this work.

I wish to express my greatest gratitude and ultimate thanks to **Prof. Magd Fouad Zakaria**, Professor of Neurology, Faculty of Medicine, Ain Shams University for accepting to supervise this work and for his valuable supervision and guiding comments, I sincerely appreciate all the encouragement and support given by him.

I am profoundly grateful to **Prof. Nevine Medhat El Nahas**, Professor of Neurology, Faculty of medicine, Ain
Shams University, for her close and kind supervision, her
constant advice and support and scientific guidance, I deeply
indebted to her for her deep interest in this subject.

I am deeply grateful to **Prof. Naglaa Mohamed EL-Khayat**, Professor of Neurology, Faculty of Medicine, Ain Shams University, I am grateful for her helpful notes and valuable recommendations throughout this work. Her constant guidance helped me to achieve this work.

I am deeply grateful to **Prof. Lobna Mohammed EL-Nabil**, professor of Neurology, Faculty of Medicine, Ain Shams University, I express my sincere appreciation for her patient guidance, constructive remarks and continuous support.

I would like to express my deep thanks to **Dr. Hossam**Mahmmoud Afify, Lecturer of Neurology, Faculty of

Medicine, Ain Shams University, for his patience,
encouragement, valuable instructions and advice throughtout
the work.

I would like to extend my thanks to all my professors, colleagues and friends, so many of them influenced, encouraged and inspired me throughout the years.

Last but not least, I wish to express my love and respect to my parents, my husband, my lovely kids and all my family, for their endless love and care, valuable emotional support and continuous encouragement which brought the best out of me. I owe them all every achievement throughout my life.

Finally, my thanks should go to all the patients who were the subjects of this work and who cooperated in this research.

TABLE OF CONTENTS		
	Page	
List of tables	i	
List of figures	iii	
List of abbreviations	vi	
Introduction and Aim of the Work	1	
Review of Literature		
Chapter (1): Watershed infarction.	7	
Chapter (2): Cerebral hemodynamics and cerebral vasomotor reactivity.	33	
Chapter (3): Cerebrovascular reserve impairment and its association with WS infarcts.	49	
Subjects and Methods	58	
Results	64	
Discussion & Conclusions	79	
Recommendations	100	
Summary	102	
References	107	
Appendix	123	
Arabic Summary		

133Xe	Xenon 133
ABP	Arterial Blood Pressure
ACA	Anterior Cerebral Artery
ACoA	Anterior Communicating Artery
ACZ	Acetazolamide
AEWSI	Anterior External Watershed Infarcts
AF	Atrial Fibrillation.
BHI	Breath-holding Index
BOLD	Blood Oxygen Level-Dependent
BZ	Border Zone
CA	Cerebral Autoregulation
CBF	Cerebral Blood Flow
CBV	Cerebral Blood Volume
CO2	Carbon dioxide
CPP	Cerebral Perfusion Pressure
CR	Corona Radiata
CSO	Centrum Semiovale
CT	Computed Tomography
CVR	Cerebral Vasomotor Reactivity
DM	Diabetes Mellitus
DWI	Diffusion Weighted Image
EEG	Electroencephalographic
EWS	External Water Shed
EWSI	External Watershed Infarction.
FLAIR	Fluid Attenuated Inversion Recovery
fMRI	Functional Magnetic Resonance Imaging
FV	Flow Velocity
H+	Hydrogen.
HDI	Hemodynamic Impairment
HDL	High Density Lipoprotein.
HTN	Hypertension
ICA	Internal Carotid Artery

ICP	Intracranial Pressures
IPH	Intra Plaque Haemorrhage.
IWS	Internal Watershed
IWSI	Internal Watershed Infarction.
K+	Potassium.
LDL	Low Density Lipoprotein.
MAP	Mean Arterial blood Pressure
MCA	Middle Cerebral Artery
MES	Micro Embolic Signal
MetS	Metabolic Syndrome
MFV	Mean Flow Velocity
MI	Myocardial infarction.
MR	Magnetic Resonance
MRA	Magnetic Resonance Angiography
MRI	Magnetic Resonance Imaging
NIRS	Near-Infrared Spectroscopy
NO	Nitric Oxide.
O2	Oxygen
OEF	Oxygen Extraction Fraction
PaCO2	Carbon dioxide Partial Pressure
PaO2	Oxygen Partial Pressure
PCA	Posterior Cerebral Artery
PCoA	Posterior Communicating Artery
PET	Positron Emission Tomography
PEWSI	Posterior External Watershed Infarcts
PI	Pulsatility Index
SPECT	Single Photon Emission Computed Tomography
T1WI	T1-weighted Image
T2WI	T2-Weighted Image
TCD	Transcranial Doppler
TIA	Transient Ishaemic Attack.
V_{bh}	Velocity Breath Holding

Vr	Velocity Rest
VS	Versus
WS	Watershed
WSI	Water Shed Infarction

List of Tables

		Page
Table 1	Age and sex distribution among the studied patients.	64
Table 2	Risk factors among the studied patients.	65
Table 3	The vascular status of the studied sample	67
Table 4	The percent of impaired CVR among studied patients (Ipsilateral & contralateral to site of lesion).	67
Table 5	Comparison between the different types of watershed infarctions regarding age and sex.	68
Table 6	Comparison between different types of watershed infarcts as regard the risk factors.	70
Table 7	The difference between the three groups of watershed infarcts as regard the presence of ICA & MCA stenosis.	71
Table 8	Comparison of CVR impairment among the three groups of WS.	73
Table 9	Comparison between AEWS & PEWS regarding impaired CVR.	74

Table 10	The age and sex among the impaired CVR group & preserved CVR group.	75
Table 11	Comparison between the impaired CVR group &preserved CVR group as regard risk factors.	76
Table 12	Comparison between impaired CVR group & preserved CVR group as regard ICA and MCA stenosis.	77

List of Figures

		Page
Figure 1	The course of internal carotid & vertebral arteries.	9
Figure 2	Blood supply distribution of cerebral arteries, lateral & medial view.	9
Figure 3	Blood supply of cerebral arteries, axial & coronal view.	10
Figure 4	Arterial circle of Willies at the base of the brain.	10
Figure 5	Cortical & ganglionic arteries.	12
Figure 6	The cortical and deep vascular system.	13
Figure 7	Types of watershed infarcts.	18
Figure 8	Neurological symptoms in patients with watershed infarctions	29
Figure 9	Axial diffusion- weighted images showing (a) bilateral posterior EWS, (b) Anterior EWS.	30
Figure 10	Different patterns of IWS infarcts in Axial diffusion weighted image; (a) rosary- like pattern, (b) partial pattern, (c) bilateral confluent pattern	32

Figure 11	Intact cerebral autoregulation, where within the autoregulatory range (50-150 mm Hg ABP), CBF remains stable. No correlation between ABP & CBF.	37
Figure 12	Impaired cerebral autoregulation, where CBF is entirely dependent on ABP. There is a positive correlation between ABP & CBF.	37
Figure 13	Effect of blood gases on CBF, hypoxia & hypercapnia increase CBF, hypocapnia decrease CBF.	40
Figure 14	(a) TCD prope insonated thought trans temporal foramen, (b) different skull foramina for insonation.	44
Figure 15	TCD for assessment of CVR.	47
Figure 16	Sex distribution among studied sample.	64
Figure 17	The three groups of watershed infarcts among the sample.	66
Figure 18	Sex distribution among the three groups of WSIs.	68
Figure 19	Age distribution among the three groups of WSIs.	69
Figure 20	Smoking among the three groups of WSIs.	69

Figure 21	ICA & MCA stenosis among the three groups of WSIs.	72
Figure 22	Impaired CVR among different types of WSIs.	73
Figure 23	Impaired CVR among AEWS & PEWS infarcts.	74
Figure 24	The difference between the group with impaired CVR & group with preserved CVR regarding the presence of DM.	76
Figure 25	ICA & MCA stenosis among the group with impaired CVR& group with preserved CVR.	78
Figure 26	56.2% of the impaired CVR group had bilateral impairement of CVR.	78

Introduction

Border-zone (BZ) or Watershed (WS) infarcts involve the junction of the distal fields of two non-anastomosing arterial systems. Classic neuropathologic studies describe two distinct supratentorial WS areas, one between the cortical territories of the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA), and the other in the white matter along and slightly above the lateral ventricle, between the deep and the superficial arterial systems of the MCA. The former, superficial areas have been commonly referred to as the external watershed (EWS), and the latter have been referred to as the internal watershed (IWS) (Momjian & Baron, 2005).

Watershed infarcts reportedly account for 10% of all brain infarcts. Although the pathological and imaging characteristics of WS infarcts are well-described, their pathogenesis remains debated whether they are caused by impaired cerebral perfusion or by embolisms from the heart, aorta, and stenotic parent artery (Yong et al, 2006).