

Role of Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging in Autism children

ESSAY

Submitted by

Maryam Mohamed Ali Mohamed

M.B.B.CH

In partial fulfillment of master degree of Radiodiagnosis
Supervised by

Dr. Sahar Farouk Shaaban

Professor of Radiodiagnosis

Ain Shams University

Dr. Tougan Taha Abd ElAziz

Lecturer of Radiodiagnosis

Ain Shams University

Faculty of Medicine
Ain Shams University
2014

Acknowledgment

First and foremost ,all appreciation and praise to **Allah**, the Most Gracious, the Most Merciful.

I would like to express my deep gratitude to **Prof. Sahar Farouk Shaaban**, professor of Radiodiagnosis, Ain Shams University. She has given me guidance and advice in every way during the course of this work.

My sincere thanks to **Dr TouganTahaAbdElAziz**, Lecturer of Radiodiagnosis, Ain Shams University. for her continuous guidance and support.

I would like to express my deepest thanks to my dear son "Ayham", I am heartily thankful for his endless love and support.

Special thanks to my parents and all my family for their endless everlasting support and for their sustained encouragement.

Last but not least ,great appreciation to my country **Libya**, and to my second home **Egypt** that included me to achieve this goal.

Maryam Mohamed Alí Mohamed

Table of Contents

List of abbreviations	Ι
List of Figures	III
List of tables	VI
Introduction & Aim of work	1
Review of Literature :	
1. Anatomical consideration	6
2. Pathophysiology of autism	27
3. Neuropsychology of autism	33
4.Physic and technique of MRS and DTI	40
5. Finding of magnetic resonance spectroscopy	73
and diffusion tensor imaging in autism	
6.Illustrated cases	91
Summary & Conclusion	97
References	100
Arabic summary	١

List of abbreviation

ANOVA	analysis of variance
ASD	Autism Spectrum Disorder
Cho	Choline
CHESS	Chemical shift selective saturation
Cr	Creatine
CSI	chemical shift imaging
DD	Developmental delay
DTI	Diffusion tensor imaging
EPI	echo planar imaging
FA	Fractional anisotropy
FACT	Fiber assignment by continuous Tracking
Gln	Glutamine
Glx	Glutamate
¹ H-MRS	Hydrogen Proton Magnetic Resonance Spectroscopy
ID	Intellectual disability
IQ	Intelligence quotient

MD	Mean Diffusivity
mI	Myo-inositol
mM	Millimolar
MMR	Measles Mumps and Rubelle
MRI	Magnetic Resonance Imaging
MRSI	Magnetic resonance spectroscopic imaging
NAA	N-acetyl Aspartate
ppm	Part Per Million
PRESS	Point Reserved Spectroscopy
PROPELLER	Periodically rotated overlapping parallel lines with enhanced reconstruction
P.value	Probability value
RD	Radial Diffusivity
SD	Standard deviation
STEAM	Stimulated Echo Acquision Mode
TD	Typically developing
TBSS	Tract-based spatial statistics
WM	White matter

List of figures

FIG. NO	TITLE	PAGE
Figure 1	Coronal section of the cerebral hemisphere.	7
Figure 2	Illustration of coronal view of cerebral	8
	hemisphere.	
Figure 3	Mid-saggital view of cerebral hemisphere.	9
Figure 4	Diagram of corpus callosum.	10
Figure 5	Mid-saggital view of corpus callosum.	11
Figure 6	Section through the basal ganglia.	12
Figure 7	Mid-saggital view of the limbic system.	13
Figure 8	Diagram through amygdaloid body.	14
Figure 9	Diagram through limbic system.	15
Figure 10	Diagram through limbic system.	15
Figure 11	Diagram through limbic diencephalon.	16
Figure 12	Axial MRI brain T1WI.	17
Figure13	Coronal MRI brainT1WI.	18
Figure 14	Saggital MRI T1WI of cerebral	18
	hemisphere.	
Figure 15	Axial MRI brain T1WI shows the	19
	hippocampus.	
Figure 16	Different images MRI brain through the	20
	entire hippocampus.	
Figure 17	T2* WI coronal imaging of hippocampus.	21
Figure 18	Saggital MRI brain shows different parts of	22
	corpus callosum.	
Figure 19	Illustration, directional map and tractogram	24
	of corpus callosum.	
Figure 20	Colour maps and tractogram of cingulum.	25
Figure 21.	Directional map for cingulum.	26
Figure 22	Unsuppressed water proton spectrum of a	44
	human brain.	

Figure 23	Single-voxel localization techniques.	46
Figure 24	2D-PRESS-MRSI pulse sequence.	51
Figure 25	Diagram of proton MR spectrum of an adult brain.	55
Figure 26	Representative spectrum of the human brain in vivo.	57
Figure 27	Diffusion within a single voxel.	61
Figure28	The cellular elements that contribute to diffusion anisotropy.	62
Figure 29	Diffusion ellipsoids (tensors).	63
Figure 30	Ellipisod Model.	64
Figure 31	Diffusion Tensor: Parameters required to mathematically describe a circle, oval, sphere, and ellipsoid.	65
Figure 32	Anisotropy map and the color coded orientation map.	66
Figure 33.	Streamline tractography.	67
Figure 34	Probabilistic tractography.	68
Figure 35	Location of the measurement voxel in the left amygdala and the left orbito-frontal cortex and representative spectra obtained.	77
Figure 36	Transverse, T2-weighted images depicting volumes of interest in left striatum and anterior cingulated.	79
Figure 37	Tract-based spatial statistics (TBSS).	85
Figure 38	Results of tract based spatial statistics analysis of fractional anisotropy and mean diffusivity.	87
Figure 39	DTI of global and regional corpus callosum regions of interest for a child with autism.	90

Figure 40	Sagittal T1-weighted magnetic resonance	91
	imaging scan of brain.	
Figure 41	Proton MR spectrum obtained in sampled	92
	voxel after postprocessing.	
Figure 42	Axial proton-density-weighted magnetic	93
	resonance imaging section of the brain.	
Figure 43	Global and regional corpus callosum	94
	regions of interest.	
Figure 44	Coronal horizontal and sagittal sections.	96

List of tables

TABLE NO.	TITLE	PAGE
Table 1	Proton Magnetic Resonance Spectroscopy NAA	74
	finding by region-of-interest in ASD	
Table 2	Proton Magnetic Resonance Spectroscopy Cr	75
	finding by region-of-interest in ASD	
Table 3	Proton Magnetic Resonance Spectroscopy Cho	75
	finding by region-of-interest in ASD	
Table 4	Proton Magnetic Resonance Spectroscopy mI	76
	Findings by Region-of-Interest in ASD	
Table 5	Proton Magnetic Resonance Spectroscopy	76
	Glutamate, Glutamine, & GABA Findings by	
	Region-of-Interest in ASD	
Table 6	summarized results for the quantitaion values of	77
	each metabolites.	
Table 7	Blood and brain glutamate levels in patients and	78
	controls	
Table 8	summary of relevant literature on DTI and	83
	autism	
Table 9	Overview of studies using whole-brain VBA	89
Table 10	Group comparison of anisotropy and	95
	diffusivities in the corpus callosum	

Introduction

Autism is a neurodevelopmental disorder defined by impairments in communication and social interaction, along with repetitive behaviors and restricted interests (Walker et al, 2012).

Neuropathology of the autism is likely due to multiple genetic and environmental factors that alter groups of neurons in different regions of the brain. Both genes and environment can alter the structure of the developing brain in different ways (Gadad et al,2013).

Magnetic resonance imaging (MRI) studies have found regional volumetric differences when comparing autism subjects to healthy controls. In that, autistic 2-3 years old had more cerebral and cerebellar white matter, and more cerebral cortical gray matter than normal ,whereas older autistic children and adolescent did not have such enlarged gray and white matter volumes (Courchesne et al,2001).

Several imaging studies have highlighted white matter, as particularly altered in autism (Schumann et al ,2010).

Interestingly, although broad volumetric differences are prominent and consistent in early Autism spectrum disorder, such differences have not been found in adolescents or adults with autism (Courchesne et al ,2004).