ULTRASOUND FINDINGS AS A SCREENING METHOD FOR CASES ADMITTED IN THE NEONATAL INTENSIVE CARE UNIT

Thesis
Submitted for partial fulfillment of the requirements
of M.D. Degree in Pediatrics

By
TAMER ABD EL HAMID
MBBCH & M.Sc.

Supervised by

Prof. Dr. NADIA BADRAWI

Professor of Pediatrics
Faculty of Medicine
Cairo University

Prof. Dr. MAHA SHEIBA

Professor of Pediatrics
Faculty of Medicine
Cairo University

Prof. Dr. LAMIAA MOHSEN

Professor of Pediatrics
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2009

ACKNOWLEDGEMENT

First, I would like to thank Allah the merciful and companssionate for making all this work possible and for granting me with the best teachers, family, friends and colleagues that many people would wish and dream of having.

I am honored to have Prof. Dr. Nadia Badrawi, Prof. of Pediatrics, Faculty of Medicine, Cairo University, as a supervisor of this work. I am greatly indebted to her for her valuable supervision and kind guidance.

I am deeply thankful to Prof. Dr. Maha Sheiba, Prof. of Pediatrics, Faculty of Medicine, Cairo University, for her great help and effort to make this work possible. I was very honoured to work with her.

Words can not express my deep gratitude and sincere appreciation to Prof. Dr. Lamiaa Mohsen, Prof. of Pediatrics, Faculty of Medicine, Cairo University, who assisted me in most of the practical work. I am greatly grateful for her generous help, kind advice, and kind guidance.

Furthermore I would like to convey my special thanks to all my staff members, my colleagues and nursing staff.

To all those I say:

Abstract

Sonography of the brain is an integral part of care in the neonate, particulary among high-risk premature infants. Current ultrasound technology allows for rapid evaluation of infants in the intensive care nursery with virtually no risk. The advantages of sonography over CT or MRI include portability, lower cost, speed, lack of ionizing radiation and no need for sedation.

KEY WORDS

ULTRASOUND FINDINGS SCREENING METHOD FOR CASES ADMITTED

CONTENTS

List of Abbreviations	I
List of Tables	III
List of Figures	\mathbf{V}
Introduction and Aim of the Work	1
Review of Literature	4
Definitions and Classification	4
• Common Problems in the Neonatal Unit	10
• Normal ultra Sonographic findings in the Neonatal Period	
	21
• Pathophysiology and Ultrasonographic Findings in Some	
Neonatal Diseases	42
Patients and Methods	117
Results	123
Discussion	168
Summary	177
Conclusion and Recommendation	179
References	181
Arabic Summary	

Abbreviations

AGA Appropriate for gestational age

AF Anterior fontanelle

AVM Arteriovenous malformation **BPD** Bronchopulmonary dysplesia

CBC Complete blood count
CBR Cerebral blood flow
CRP c-reactive protein
CSF Cerbrospinal fluid

DIC Dissemenated intravascular coagulopathy **ECMO** Extracorporeal membrane oxygenation

GA Gestational age

GMH Germinal matrix hemorrhage

HIE Hypoxic ischemic enchphalopathy

IPH Intraparenchmal hemorrhageIUGR Intrauterine growth retardationIVH Intra ventricular heamorrhage

LMP Last menstrual periodMF Mastoid fontanelleMCA Midlle cerebral arteryMCK Multicystic kidney

NAIT Neonatal alloimmune thrombocytopenia

NEC Necrotizing enterocolitis
NICU Neonatal intensive care unit

OL Oligodendroglia PCK Polycystic kidney

PDA Patent ductas arteriosus

PMA Postmenstrual agePF Posterior fontanelle

PROM Premature rupture of membranes

PVH Periventricular hemorrhage
PVL Periventricular leukomalacia
RDS Respiratory distress syndrome

RHD Rheumatic heart disease

SGA Small for gestational ageTSB Total serum bilirubin

US Ultrasound

VGAM Vein of Galen anurysmal malformation

VLBW Very low birth weightVM Ventriculomegaly

UPJO Uretro pelive junction obstruction

WM White matter

List of Tables

		Page
Table (1)	Grades of intraventricular haemorrhage (1)	64
Table (2)	Grades of intraventricular haemorrhage (2)	66
Table (3)	Differential considerations for central nervous system	90
	anomalies of large cystic swellings	
Table (4)	Demographic Data of the Studied Cases	124
Table (5)	Maternal Medical History in the Studied Cases (n=142)	125
Table (6)	Maternal Obstetric History in the Studied Cases	127
Table (7)	Anthropometric Measurements of the Studied Cases	127
Table (8)	Mode of Delivery of the Studied Cases	128
Table (9)	History of 5 min APGAR scoring of the Studied Cases	129
Table (10)	History of Birth Trauma of the Studied Cases	129
Table (11)	The Frequency Distribution of the Laboratory Data of the Studied Cases	132
Table (12)	Echocardiographic Findings in the studied cases	133
Table (12)	Brain Computed Tomography results of the studied cases	134
14610 (10)	Brain compared Tomography results of the studied cases	101
Table (14)	The Frequency Distribution of the Abnormal Findings of Cranial Utrosonography of the Studied Cases	135
Table (15)	The Frequency Distribution of the Abnormal Findings of	137
1 abic (13)	Cranial Utrosonography of the Studied Cases in relation to	137
	the laboratory finings	
Table (16)	The Frequency Distribution of the Abnormal Findings of	138
1 abic (10)	Cranial Utrosonography of the Studied Cases in relation to	100
	the echocardiographic findings	
Table (17)	The Frequency Distribution of the Abnormal Findings of	139
14610 (17)	Cranial Utrosonography of the Studied Cases in relation to	107
	the Brain Computed Tomography results of the studied cases	
Table(18):	Neonate Characteristics and Univariate Analysis for the	140
() .	Factors Associated With abnormal findings in cranial	
	ultrasonography	
Table (19)	Multivariate Analysis controlling for the Factors Significantly	141
10010 (12)	(P < .05) Associated at Univariate Analysis with the presence	
	of cranial ultrasonographic abnormalities	
Table (20)	Frequencies of Cranial Utrosonographic Abnormalities of the	142
	studied cases in relation to Birth trauma	
Table (21)	Frequencies of Cranial Utrosonographic Abnormalities of the	142
` /	_	

Table (22)	studied cases in relation to Birth weight Frequencies of Cranial Utrosonographic Abnormalities of the studied cases in relation to Gestational age	143
Table (23)	Frequencies of Cranial Utrosonographic Abnormalities of the studied cases in relation to 5 min Apgar score (n=120/142)	144
Table (24)	Frequencies of Cranial Utrosonographic Abnormalities of the studied cases in relation to ventilatory support	145
Table (25)	Cranial Utrosonographic Abnormalities of the studied cases in relation to neurological symptoms	146
Table (26)	Frequencies of Cranial Utrosonographic Abnormalities of the studied cases in relation to neurological symptoms.	147
Table (27)	Comparison of incidence of Cranial Utrosonographic Abnormalities between the Different Subgroups	148
Table (28)	Distribution of Abdominal Ultrosonographic abnormalities in the studied cases	150
Table(29)	Distribution of Abdominal Ultrosonographic abnormalities in the studied cases in relation to the laboratory finings	152
Table (30)	Distribution of Abdominal Ultrosonographic abnormalities in the studied cases in relation to to the echocardiographic findings	153
Table (31)	Univariate Analysis for the neonatal and maternal Factors Associated With abnormal findings in abdominal ultrasonography in Neonates	154

List of Figures

Fig.	(1)	sagittal section in the brain	27
Fig.	(2)	Coronal Plans	28
Fig.	(3)	Coronal Plan 1 (Frontal lobe)	29
Fig.	(4)	Coronal Plan 2 (Anterior Horne of Lateralventricles)	31
Fig.	(5)	Coronal Plan 5 (Trigone of lateral ventricle)	34
Fig.	(6)	Coronal Plan 6 (Occipital lobe)	35
Fig.		Sagittal Plans	36
Fig.	(8)	Sagittal Plan 3 (Midline sagittal)	20
Fig.	(9)	Sagittal Plan 2 & 4 (Angled para-sagittal)	38
Fig.	(10)	Vein of Galen Malfomatiorn	39 44
Fig.	(11)	Brain Odema	51
Fig.	(12)	Periventricular Leukomalacia G I	56
Fig.	(13)	Periventricular Leukomalacia G II	57
Fig.		Periventricular Leukomalacia G III	57
Fig.	(15)	Periventricular Leukomalacia G IV	
Fig.	(16)	Grade I IVH (Germinal matrix haemorrhage)	58 66
Fig.	(17)	Grade II IVH	67
Fig. ((18)	Grade III IVH	67
Fig. ((19)	Grade IV IVH	68
Fig.	(20)	Dandy Walker Malformation	80
Fig.	(21)	Hydrocephalus	82
Fig.	(22)	Cytomegalovirus	94
1		,	1

Fig. (23)	Meningitis	97
Fig. (24)	Brain abscess	100
Fig. (25)	Abdominal Ultrasonography show Nephrocalcinosis.	107
Fig. (26)	Ultrasonography in Adrenal Gland	109
Fig. (27)	Horseshoe kidney	113
Fig. (28)	Renal duplication	115
Fig. (29)	The Sex Distribution of the Studied Cases	123
Fig. (30)	Maternal Medical History in the Studied Cases	126
Fig. (31)	Mode of Delivery of the Studied Cases	128
Fig. (32)	The Frequency Distribution of the Clinical	
	respiratory and Cardiovascular manifestations of the	
	Studied Cases.	131
F: (22)		
Fig. (33)	The Frequency Distribution of the Clinical	
	Abdominal and Neurological manifestations of the	131
	Studied Cases.	
Fig (34)	The Ventilatory support of the studied cases	134
Fig (35)	Prevalence of Cranial Utrosonography	136
	Abnormalities among the Studied Cases	_**
Fig (36)	Prevalence of Different Grades of Intra-ventricular	136
	Hemorrhage among the Studied Cases	

Fig (37)	Frequencies of Cranial Utrosonographic	
	Abnormalities of the studied cases in relation to	
	Birth weight	143
Fig (38)	Frequencies of Cranial Utrosonographic	
	Abnormalities of the studied cases in relation to	1 4 4
	Gestational age	144
Fig (39)	Frequencies of Cranial Utrosonographic	
	Abnormalities of the studied cases in relation to 5	145
	min Apgar score	1.0
Fig (40)	Frequencies of Cranial Utrosonographic	
	Abnormalities of the studied cases in relation to	
	ventilatory support	146
Fig (41)	Frequencies of Cranial Utrosonographic	
	Abnormalities of the studied cases in relation to	
	neurological symptoms	147
Fig (42)	Distribution of Abdominal Ultrosonographic	
	findings of the studied cases (n=142)	151
Fig (43)	Distribution of Abdominal Ultrosonographic	
	abnormalities in the studied cases (n=15)	151
Fig (44)	Normal brain	155
Fig (45)	germinal matrix hemorrhage	156
Fig (46)	Mild dilated lateral ventricles (hydrocephalus)	158
Fig (47)	Bilateral germinal matrix cyst	160

Fig (48)	Subdural effusion	161
Fig (49)	Dilated lateral,third,and forth ventricles with turbid	162
	fluid (meningites)	
Fig (50)	Normal kidney	163
Fig (51)	Lleft kidney shows pelvicalyceal dilatation	164
Fig (52)	Multicystic dysplastic kidney	165
Fig (53)	Hyperechogenic renal medullary pyramids	166
	(nephrocalcinosis)	
Fig (52)	Right suprarenal hemorrhage	167

Introduction

Ultrasound is the most available and easily repeatable technique for imaging of the neonate. Its quality and diagnostic accuracy depends on several factors; the suitability of the ultrasound machine for neonatal work, the use of optimal settings and probes, appropriate scanning protocols, the use of a variety of acoustic windows and last but not least, the scanning experience of the examiner. Knowledge of normal anatomy and the echogenicities of different tissues in normal and pathological situations as well as familiarity with the physiological and pathological processes likely to be encountered are vital (*Leijser et al.*, 2006).

Abdominal ultrasound is a very useful tool for detecting abdominal masses, congenital anomalies as well as abnormalities in the gastrointestinal or urinary system. It is particularly useful in cases of persistence of neonatal jaundice beyond 2 weeks of age to differentiate between the three most common causes: hepatitis, biliary atresia, and choledochal cyst. US is useful as well for demonstrating inspissated bile and biliary duct stones (*Gubernick et al.*, 2000).

Cranial ultrasonography can be also of great help as a bed side screen for neonatal intracranial ischemia and hemorrhage (*Boal et al.*, 1995).

Cerebral hemorrhage and its different patterns whether intraventricular or periventricular hemorrhagic infarction can be detected by ultrasound. Complications like periventricular leucomalacia and its different stages can be also elicited.

The importance of repeating the US examinations until near term is highlighted (*Veyrac et al.*, 2006).

Cranial Sonography, although the most commonly used imaging technique in neonates, is less sensitive and less specific for the detection of intracranial ischemia (*Blankenberg et al.*, 2000).

Aim of the Work

The aim of this study is to screen most of babies admitted to NICU within certain period (6 months) for neonatal abnormalities using U/S: cranial and abdominal.