

Sorption Studies of Some Radionuclides Using Natural Clays

Thesis Presented By

Ahmed Mahmoud Elewa Abd El-Gawad

B.Sc. in Chemistry, 2011

Nuclear Chemistry Department – Hot Laboratories

Center – Atomic Energy Authority

Submitted To

Chemistry Department, Faculty of Science, Ain Shams
University

In
Partial Fulfillment of the Requirement for
the Degree of Master of Science (Chemistry)

Cairo 2016

Faculty of Science Chemistry Department

Sorption Studies of Some Radionuclides Using Natural Clays

Thesis Presented By

Ahmed Mahmoud Elewa Abd El-Gawad

B.Sc. in Chemistry, 2011

Nuclear Chemistry Department – Hot Laboratories

Center – Atomic Energy Authority

Submitted To

Chemistry Department, Faculty of Science, Ain Shams University
In
Partial Fulfillment of the Requirement for
the Degree of Master of Science (Chemistry)

Supervised By

Prof. Dr. Ebtisam A. saad

Prof. of Inorganic and Radiochemistry, Faculty of Science, Ain Shams University Prof. Dr. Essam M. Abdel Ghany

Prof. of Radiochemistry, Vice Dean of Radioisotopes Production and Radiation Sources Division, Hot Laboratories Center, Atomic Energy Authority

Assist, Prof. Mamdoh R. Mahmoud

Assist. Prof. of Radiochemistry, Hot Laboratories Center, Atomic Energy Authority

Sorption Studies of Some Radionuclides Using Natural Clays

Thesis Presented By Ahmed Mahmoud Elewa Abd El-Gawad

B.Sc. in Chemistry, 2011

<u>Thesis supervisors</u>	<u>Signature</u>
1- Prof. Ebtisam A. saad	
Prof. of Inorganic and	
Radiochemistry, Faculty of	
Science, Ain Shams University	
2- Prof. Essam M. Abdel Ghany	
Prof. of Radiochemistry, Vice Dean of	
Radioisotopes Production and Radiation	
Sources Division, Hot Laboratories Center,	
Atomic Energy Authority	
3- Assist. Prof. Mamdoh R. Mahmoud	
Assist. Prof. of Radiochemistry,	
Hot Laboratories Center,	
Atomic Energy Authority	

Head of the Chemistry Department Prof. Dr. Ibrahim H. A. Badr

Acknowledgment

First, I am deeply thankful to my God "Allah", by the grace of whom, the progress and success of this work was possible.

I would like to express my deep gratitude to **Prof. Dr. Ebtisam**A. saad, prof. of Inorganic and Radiochemistry, Faculty of Science, Ain
Shams University; for his sponsorship and moral support of this work,

I am greatly indebted to **Prof. Dr. Essam M. Abdel Ghany**, Prof. of Radiochemistry, Vice Dean of Radioisotopes Production and Radiation Sources Division, Hot Laboratories Center, Atomic Energy Authority (EAEA); for suggesting the topics of this thesis, planning of the experimental work, effective supervision, valuable discussions, sincere advices, and continuous encouragement during all phases of carrying this work

I would like to express my sincere appreciation to **Assist. Prof.**Mamdoh R, Mahmoud, Assist. Prof. of of Radiochemistry, Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, (EAEA); for his continuous supervision, planning of the experimental work and valuable discussions.

I wish also to express my deep thanks to **Dr. Ghada M. Rashad** (Lecturer of Radiochemistry, Atomic Energy Authority) who supported me during the study and the experimental work.

Special thanks to all colleagues and staff members in the Hot Lab. Center, Atomic Energy Authority for their unique help and support.

My deep thanks to my parents, my brothers, my sisters, my wife and my lovely daughter (Arwa) whom I owe too much.

Ahmed Mahmoud Elewa

J Radioanal Nucl Chem DOI 10.1007/s10967-016-4726-4

Removal of radiocobalt from aqueous solutions by adsorption onto low-cost adsorbents

Ghada M. Rashad¹ · Mamdoh R. Mahmoud¹ · Ahmed M. Elewa¹ · Essam Metwally¹ · Ebtissam A. Saad²

Received: 17 September 2015 © Akadémiai Kiadó, Budapest, Hungary 2016

Abstract Four clays (bentonite, montmorillonite, diatomite and sepiolite) were used as low-cost adsorbents for removal of Co(II) radionuclides. The effect of the solution pH was studied in the range 1.5–10. The kinetic data were analyzed by the pseudo-first-order, the pseudo-second-order and intraparticle diffusion models. The equilibrium isotherms of Co(II) were analyzed by Langmuir and Freundlich models. The thermodynamic parameters (ΔG° , ΔH° and ΔS°) were calculated and the results showed that

[1]. From the health point of view, it is necessary to remove Co(II) radionuclides from radioactive wastewaters before their discharge into the environment. Chemical precipitation, membrane separation, evaporation, solvent extraction, flotation, coagulation/flocculation and adsorption are the traditional methods used for treatment of radioactive liquid waste [2–7]. Among these methods, adsorption technique is the most effective method for removal of metal ions from aqueous solutions owing to its low cost as well as simplicity

Contents

List of figures		VI
List of tables		XI
Objectives of the work		XII
		XIV
Chap	ter I: Introduction	
1. Introduction		1
1.1. Sorption		3
1.1.1. Sorption	types	4
1.1.1.1.	Sorption types based on the sorbate	
	concentration	4
1.1.1.2.	Sorption types based on the force	
	existing between sorbate and sorbent	4
1.1.2. Sorption r	nechanism	6
1.1.2.1. 0	Outer-sphere surface-complexation	6
1.1.2.2. Is	nner-sphere surface-complexation	7
1.2. Clay minerals		9
1.2.1. Types of a	active sites in clays	10
1.2.2. Types of s	surface charge on clay minerals	10
1.2.3. Origin of	clay mineral surface charge	11
1.2.4. Surface fu	nctional groups	13

1.2.5. The studied clays	14
1.2.5.1. Bentonite&Montmorillonite	14
1.2.5.2. Sepiolite	15
1.2.5.3. Diatomite	16
1.3. Sorption isotherm	17
1.4. Sorption isotherm models	19
1.4.1. Freundlich isotherm	19
1.4.2. Langmuir isotherm	20
1.5. Kinetic studies	21
1.5.1. Kinetic modeling	21
1.5.1.1. Pseudo-first-order kinetic model	21
1.5.1. 2. Pseudo-second-order kinetic model	22
1.5. 2. Diffusion models	23
1.6. Thermodynamic parameters	24
1.7. Literature review	26
Chapter II: Experimental	
2.1. Chemicals and Apparatus	34
2.1.1. Chemicals	34
2.1.1.1. Hydrochloric acid solution	34
2.1.1.2. Sodium hydroxide solution	34
2.1.1.3. Sodium chloride solution	34

2.1.1.4. Calcium chioride solution	33
2.1.1.5. Magnesium nitrate solution	35
2.1.1.6. Aluminum chloride solution	35
2.1.1.7. Humic acid	35
2.1.1.8. Ethylenediaminetetraacetic acid solution	35
2.1.1.9. Cobalt chloride solution	36
2.1.1.10. Europium chloride solution	36
2.1.1.11. Cesium Chloride solution	36
2.1.2. Apparatus	37
2.1.2.1. Distillator	37
2.1.2.2. Balance	37
2.1.2.3. pH-meter	37
2.1.2.4. Thermostated shaker	37
2.1.2.5. Centrifuge	38
2.1.2.6. Furnace	38
2.1.2.7. Single channel analyzer	38
2.1.2.8. Multichannel analyzer	38
2.1.2.9. X-Ray fluorescence spectrophotometer	39
2.2. Sorbents	39
2.3. The radioisotope preparation	39
2.4. Sorption study	40
2.4.1. Effect of pH	40
2.4.2. Effect of solid to liquid ratio	40
2.4.3. Kinetic experiments	41

2.4.4. Initial radionuclide concentration	41
2.4.5. Effect of competing ions	41
2.4.6. Effect of temperature	42
2.5. Data Analysis	42
2.6. Desorption studies	43
Chapter III: Results and Discussion	
3.1. Sorption of radionuclides from aqueous solutions for	
single-component system	44
3.1.1. Effect of pH	44
	52
3.1.2. Effect of solid to liquid ratio	
3.1.3. Kinetic studies	55
3.1.3.1. Effect of contact time	55
3.1.3.2. Kinetic modeling	58
3.1.3.3. Diffusion study	60
3.1.4. Equilibrium isotherm studies	64
3.1.4.1. Equilibrium isotherm	65
3.1.4.2. Sorption isotherm models	67
3.1.5. Effect of competing ions	75
3.1.6. Effect of temperature	79
3.1.7. Thermodynamic parameters	81
3.2. Desorption studies	85

3.3. Sorption of radionuclides from aqueous solutions for	
multi-component system	94
3.3.1. Effect of contact time	94
3.3.2. Effect of solid to liquid ratio at different pH values.	97
3.3.3. Effect of competing ions	99
3.3.4. Effect of pH in presence of EDTA	102
3.4. Separation study	105
3.4.1. Separation of europium from cobalt using humic	
acid	105
3.4.2. Separation of cobalt from cesium using EDTA	107
3.4.3. Separation of europium from cobalt using NaCl	109
3.4.4. Separation of cesium from cobalt using NaCl	111
3.4.5. Separation of radionuclides from their mixture	113
Summary	115
References	123
Arabic summary	