ASSESSMENT OF THE DIFFERENT BIOTECHNOLOGICAL TECHNIQUES TO SUPPRESS THE ADVERSE EFFECT OF SOME ANTINUTRITIONAL COMPONENTS

RASHA KAMAL MOHAMED ABD EL-NABI

B.Sc. Agric. Sc. (Food Technology), Cairo University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Food Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

> > 2010

Approval Sheet

ASSESSMENT OF THE DIFFERENT BIOTECHNOLOGICAL TECHNIQUES TO SUPPRESS THE ADVERSE EFFECT OF SOME ANTINUTRITIONAL COMPONENTS

RASHA KAMAL MOHAMED ABD EL-NABI

B.Sc. Agric. Sc. (Food Technology), Cairo University, 2003

This thesis for M. Sc. degree has been approved by:			
Prof. Dr. Taiseer Mahmoud Abu-Bakr Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Alexandria University			
Prof. Dr. Ali Saleh Moawad Dabash Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University			
Prof. Dr. Nagwa Mousa Hassen Rasmy Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University			
Prof. Dr. Ahmed Youssef Gibriel Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University			

Date of Examination: 16 / 6 / 2010

ASSESSMENT OF THE DIFFERENT BIOTECHNOLOGICAL TECHNIQUES TO SUPPRESS THE ADVERSE EFFECT OF SOME ANTINUTRITIONAL COMPONENTS

By RASHA KAMAL MOHAMED ABD EL-NABI

B.Sc. Agric. Sc. (Food Technology), Cairo University, 2003

Under the supervision of:

Prof. Dr. Ahmed Youssef Gibriel

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Nagwa Mousa Hassen Rasmy

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Prof. Dr. Ferial Mohamed Mohamed Abu-Salem

Research Prof. Emeritus of Food Science and Technology, Department of Food Technology, National Research Center

ABSTRACT

Rasha Kamal Mohamed: Assessment of the Different Biotechnological Techniques to Suppress the Adverse Effect of Some Antinutritional Components. Unpublished M. Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2010.

Soy bean, mung bean, kidney bean and jojoba seeds were investigated for their content of antinutritional factors (ANFs), including trypsin inhibitors, phytic acid, total phenolic compounds as well as cyanogenic glucosides in jojoba seeds. The effects of some physical treatments (e.g. soaking, dehulling and different cooking e.g. boiling, autoclaving, microwave cooking methods) and biotechnological treatments (e.g. germination and fermentation with lactic acid bacteria or Rhizopus oligosporus) individually and in combination on reducing ANFs were studied. Soybean contained the highest trypsin inhibitor activity (58.13mg/g) and phytic acid (35.01 mg/g) among all investigated seeds, while mung bean showed the highest value of total phenolic compounds (396.31mg/100g). Jojoba seeds contained (16.67mg/g) simmondsin. All treatments applied caused significant decreases in antinutritional factors of the tested seeds. Soaking of the seeds for different periods could lower the level of ANFs below the control value. Longer the periods of soaking caused greater losses in ANFs. Boiling caused greater losses in trypsin inhibitor activity. After 60 min. of boiling TIA was drastically decreased (4–10% residual activity) in tested seeds while the most effective treatment caused a complete inactivation of trypsin inhibitor activity for all tested seeds was after boiling for 90 min. and after autoclaving at 121°C for 10 min. Fermentation and germination individually and in combination with dehulling and cooking processes caused significant (p < 0:05) decreases in phytic acid content individual. The highest reduction in phenolic compounds was achieved in 72, 48 and 120 h. of germination (66.8, 45.0 and 60.8 %) for soybean, mung bean and kidney bean respectively, the same pattern was observed in trypsin inhibitor activity

for the same samples. Among the four tested strains *L. bulgaricus* and *L. acidophilus* were clearly the most effective strains for decreasing phytic acid and total phenolic content respectively, during fermentation of different legume seeds. However, L. casei was able to reduce simmondsin content by 18.42 % after 72 h. fermentation at 37° C. Solid - state fermentation of different seeds showed that good tempeh cake can be produced from soybean and kidney bean when inoculated with 3.22X10⁵ spores/ 100 g samples Soy and kidney beans tempeh contained significantly less amounts of ANFs than raw beans .However, fermentation with *R. oligosporus* reduced phytic acid and total phenolic by 70.0 and 92.0 % for jojoba seeds.

Key Words: Antinutritional factors, Legumes, Trypsin inhibitor, Phytic acid, Total phenolic compounds, Soaking, Dehulling, Cooking, Germination, Fermentation, Tempeh, Lactic acid bacteria.

ACKNOWLEDGEMENT

All praises and thanks are due to **ALLAH**, who blessed me with kind professors and colleagues, and gave me the support to produce this thesis.

I am grateful and indebted to **Prof. Dr. Ahmed Gabriel**, Professor of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain-Shams University, for his kind supervision, willing cooperation keen guidance and continuous encouragement through out this investigation.

I would like to express my sincere gratitude, deepest thanks and appreciation to **Prof. Dr. Nagwa Mousa Hassen Rasmy**, Professor of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain-Shams University, for her kind suggestions, valuable encouragement, giving me the golden opportunity and great honor to work under her supervision, useful comments, editing this thesis and plentiful active for me to complete this work.

Grateful acknowledgement, deepest thanks and appreciation to **Prof. Dr. Ferial Mohamed Mohamed Abu-Salem** Professor of Food Science and Technology, Department of Food Science & technology, Food Science & Nutrition Division; National Research Center for her planning of this study, kind direct supervision, valuable criticism and giving all the facilities that made this work possible.

Sincere appreciation and deepest thanks are also to **Dr. Esmat Anwar kotb**, Associate Professor of Food Science and Technology, Department of Food Science & technology, Food Science & Nutrition Division; National Research Center for her guidance, constructive criticism and every possible help she kindly offered throughout the course of this work.

Thanks due to all the staff members and colleagues in the Food Science and Nutrition Division; National Research Center and in the Food Science and Technology Department, Faculty of Agriculture, Ain Shams University for giving all the facilities that made this work possible.

In this respect I can not forget thank my family for their continuous help, encouragement, patience, understanding and moral support to give me chances to complete this work. I also dedicate this work to the soul of my father.

CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
1. INTRODUCTION	1
2- REVIEW OF LITERATURE	5
2.1 Legumes in human nutrition	5
2.1.1 Nutritional profiles	5
2.1.2 Proximate composition	7
2.1.3 Health effect	10
2.2 Antinutrional factors in legumes	12
2.2.1 Protease inhibitors	13
2.2.2 Phytates	17
2.2.3 Total phenols	19
2.2.4 Cyanogenic glycosides (simmondsin)	23
2.3 Effect of processing on antinutritional factors of legumes	24
2.3.1 Soaking	24
2.3.1.1 Trypsin inhibitor	25
2.3.1.2 Phytic acid	26
2.3.1.3 Total phenolic compounds	27
2.3.2 Dehulling	28
2.3.2.1 Trypsin inhibitor	28
2.3.2.2 Phytic acid	28
2.3.2.3 Total phenolic compounds	29
2.3.3 Cooking	29
2.3.3.1 Trypsin inhibitor	29
2.3.3.2 Phytic acid	32
2.3.3.3 Total phenolic compounds	33
2.3.4 Germination	34
2.3.4.1 Trypsin inhibitor	34
2.3.4.2 Phytic acid	35

2.3.4.3 Total phenolic compounds	36
2.3.5 Fermentation	37
2.4 Combined treatments	40
2.5 Effect of processing on cyanogenic (simmondsin)	42
3- MATERIALS AND METHODS	44
3.1 Materials	44
3.1.1 Seed samples	44
3.1.2 Mould strains	44
3.1.3 Bacterial strains	44
3.1.4 Chemicals	45
3.1.5 Media	45
3.1.5.1 Potato dextrose agar (PDA)	45
3.1.5.2 Lactobacilli broth: (MRS-broth)	45
3 .1.5.3 Lactobacilli agar (MRS –agar)	46
3.2 Methods	47
3.2.1 Processing methods	47
3.2.1.1 Physical methods	47
3.2.1.1.1 Soaking	47
3.2.1.1.2 Cooking treatments	47
3.2.1.2 Biotechnological methods	47
3.2.1.2.1 Germination	47
3.2.1.2.2 Lactic acid fermentation	47
3.2.1.2.3 Production of bean tempeh	48
3.2.1.3 Combined treatments	50
3.2.1.3.1 Soaking and dehulling	49
3.2.1.3.2 Germination and dehulling	50
3.2.1.3.3 Germination and boiling (30min.)	50
3.2.1.3.4 Germination, dehulling and boiling (30min.)	50
3.3 Analytical methods	51
3.3.1 Proximate composition	51
3.3.2 Determination of trypsin inhibitor	51
3.3.3 Determination of phytic acid	52

3.3.4 Determination of total phenolics	54
3.3.5 Determination of simmondsin	54
3.4 Sensory evalution and acceptability of soy and kidney	55
bean based tempeh	
3.5 Statistical analysis	56
4- RESULTS AND DISCUSION	57
4.1. Proximate composition of some legumes and jojoba seeds	57
4.2 Effect of some physical treatments on antinutritional factors	60
of legumes and jojoba seeds	
4.2.1. Effect of soaking	60
4.2.1.1Trypsin inhibitor	61
4.2.1.2 Phytic acid	64
4.2.1.3 Total phenolic compounds	66
4.2.1.4 Cyanogenic glycosides	68
4.2.2. Effect of different cooking methods	69
4.2.2.1 Trypsin inhibitor	69
4.2.2.2 Phytic acid	71
4.2.2.3 Total phenolic compounds	73
4.2.2.4 Cyanogenic glycosides	76
4.3.Effect of some biotechnological treatments on	77
antinutritional factors of legumes and jojoba seeds	
4.3.1. Effect of germination	77
4.3.1.1 Trypsin inhibitor	77
4.3.1.2 Phytic acid	80
4.3.1.3 Total phenolic compounds	81
4.3.2. Effect of fermentation with lactic acid bacteria	84
4.3.2.1 Trypsin inhibitor	84
4.3.2.2 Phytic acid	85
4.3.2.3 Total phenolic compounds	93
4.3.2.4 Cyanogenic glycosides	101
4.3.3. Solid state fermentation with <i>Rhizophus oligosporus</i>	104
(Tempeh production)	

4.4.3.1. Characteristics features and acceptability of legumes	105
Tempeh	
4.4.3.2. Effect of solid state fermentation with <i>R. oligosporus</i>	109
on antinutritional factors	
4.3.3.2.1 Trypsin inhibitor activity	109
4.3.3.2.2 Phytic acid	110
4.3.3.2.3 Total phenolic compounds	111
4.3.3.2.4 Cyanogenic glycosides	113
4.4 Effect of combined treatments on antinutritional	114
factors of legumes and Jojoba seeds	
4.4.1. Trypsin inhibitor activity	114
4.4.2. phytic acid	116
4.4.3. total phenolic compounds	119
4.4.4 Cyanogenic glycosides	123
Conclusion	124
SUMMARY	125
REFERENCES	132
ARARIC SUMMARY	

LIST OF TABLES

No	Title	Page
1	Proximate composition of some legume and jojoba seeds	58
	g / 100 g sample (dry weight basis)	
2	Some antinutritional factors contents of raw tested	59
	legumes and jojoba seeds (dry weight basis)	
3	Effect of soaking on trypsin inhibitor content (mg/g) of	63
	some legume and jojoba seeds (dry weight basis)	
4	Effect of soaking on phytic acid content (mg/g dry	65
	weight basis) of some legume and jojoba seeds	
5	Effect of soaking on total phenol content (mg/100gm) of	66
	some legumes and jojoba seeds (dry weight basis)	
6	Effect of different cooking methods on trypsin inhibitor	69
	content (mg/gm) of some legumes and jojoba seeds (dry	
	weight basis)	
7	Effect of different cooking methods on phytic acid	72
	content (mg/g) of some legumes and jojoba seeds (dry	
	weight basis)	
8	Effect of different cooking methods on total phenol	74
	compounds (mg/100gm) of some legumes and jojoba	
	seeds (dry weight basis)	
9	Effect of germination on trypsin inhibitor content	78
	(mg/gm) of some legumes (dry weight basis)	
10	Effect of germination on phytic acid content (mg/gm) of	80
	some legumes (dry weight basis)	
11	Effect of germination on total phenol content	82
	(mg/100gm) of some legumes (dry weight basis)	
12	Effect of fermentation with L.plantarum on phytic acid	86
	content (mg / gm) of some legumes and jojoba seed (dry	
	weight basis)	

13	Effect of fermentation with <i>L.bulgaricus</i> on phytic acid content (mg / gm) of some legumes and jojoba seeds	87
	(dry weight basis)	
14	Effect of fermentation with L. acidophilus on phytic acid	88
	content (mg / gm) of some legumes and jojoba seeds	
	(dry weight basis)	
15	Effect of fermentation with L. casei on phytic acid	89
	content (mg / gm) of some legumes and jojoba seeds	
	(dry weight basis)	
16	Effect of fermentation with <i>L.plantarum</i> on total phenol	95
	content (mg/100gm) of some legumes and jojoba seed	
	(dry weight basis)	
17	Effect of fermentation with L. bulcaricus on total phenol	96
	content (mg/100gm) of some legumes and jojoba seeds	
	(dry weight basis)	
18	Effect of fermentation with Lacidophilus on total	97
	phenol content (mg/100gm) of some legumes and jojoba	
	seeds (dry weight basis)	
19	Effect of fermentation with L. casei on total phenol	98
	content (mg/100gm) of some legumes and jojoba seeds	
	(dry weight basis)	
20	Sensory evaluation of fried soy bean and fried kidney	108
	bean tempeh samples fermented with Rhizopus	
	oligosporus	
21	Effect of R. oligosporus fermentation for tempeh	110
	production on trypsin inhibitor content (mg/g) of some	
	legumes and jojoba seeds (dry weight basis)	
22	Effect of R. oligosporus fermentation for tempeh	111
	production on phytic acid content (mg / gm) of some	
	legumes and jojoba seeds (dry weight basis)	

23	Effect of R. oligosporus fermentation for tempeh	112
	production on total phenolic content (mg / gm) of some	
	legumes and jojoba seeds (dry weight basis)	
24	Effect of combined processing methods on trypsin	115
	inhibitor (mg/g) of some legumes and jojoba seeds(dry	
	weight basis)	
25	Effect of different processing methods on phytic acid	117
	(mg/g) of some legumes and jojoba seeds (dry weight	
	basis)	
26	Effect of different processing methods on total	120
	phenolic content (mg/100g) of some legumes and	
	ioioba seeds (dry weight basis)	