

Ain Shams University
Faculty of Engineering
Computer and Systems Engineering Department

Intrusion Detection Correlation in Computer Network Using Multi-Agent System

A Dissertation

Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Electrical Engineering Computer and Systems Engineering Department

Submitted by **Ayman Elsayed Elsayed Taha**

M. Sc., Electrical Engineering (Computer and Systems Engineering) Ain Shams University, 2002

Supervised by

Prof. Dr. Hani M. K. Mahdi Prof. Dr. Ismail Abdel Ghafar Farag Assoc. Prof. Dr. Ayman Mohamed Bahaa

Cairo, Egypt

May, 2011

جامعة عين شمس - كلية الهندسة قسم هندسة الحاسبات والنظم

ترابط اساليب اكتشاف الاختراق في شبكات الحواسب باستخدام نظام العملاء المتعددون

رسالة مقدمة للحصول على درجة الدكتوراه في الهندسة الكهربية (هندسة الحاسبات والنظم)

مقدمة من أيمن السيد السيد طه ماجستير الهندسة الكهربية (هندسة الحاسبات والنظم) جامعة عين شمس – 2002

تحت اشراف أ.د. هانى محمد كمال مهدى أ.د. اسماعيل عبد الغفار فرج د. أيمن محمد بهاء الدين القاهرة - مصر يوليو - 2011

Abstract

Ayman Elsayed Elsayed Taha Intrusion Detection Correlation in Computer Network

Using Multi-Agent System

Doctor of Philosophy Dissertation

Ain Shams University, 2011

Alert and event correlation is a process in which the alerts produced by one or more intrusion detection systems and events generated from different systems and security tools are analyzed and correlated to provide a more succinct and high-level view of occurring or attempted intrusions. Current correlation techniques improve the intrusion detection results and reduce the huge number of alerts in a summarized report, but still have some limitations such as a high false detection rate; missing alerts in a multi-step attack correlation; alert verifications are still limited; Zero Day attacks still have low rates of detection; Low and Slow attacks and Advanced Persistent Threats (APTs) cannot be detected; and some attacks have evasion techniques against IDSs. Finally, current correlation systems do not enable the integration of correlations from multiple information sources and are limited to only operate in IDS alerts. Agents and multiagent systems have been widely used in IDSs because of their advantages.

The thesis purpose is to prove the possibility of improving both IDS Accuracy and IDS Completeness through reducing either False Positive or False Negative alerts using correlation between different available information sources in the system and network environment. The dissertation presents a modular framework for a Distributed Agent Correlation Model (DACM) for intrusion detection alerts and events in computer networks. The framework supports the integration of multiple correlation techniques and enables easy implementation of new components.

The framework introduces a multi-agent distributed model in a hierarchical organization; correlates alerts from the IDS with attack signatures from information security tools and either system or application log files as other sources of information. Correlation between multiple sources of information reduces both false negative and false positive alerts, enhancing intrusion detection accuracy and completeness. Each local agent aggregates/correlates events from its source according to a specific pattern matching. The integration of these correlation agents together forms a complete integrated correlation system.

The model has been implemented and tested using a set of datasets. Agent's proposed models and algorithms have been implemented, analyzed, and evaluated to measure detection and correlation rates and reduction of false positive and false negative alerts.

In conclusion, DACM enhances both the accuracy and completeness of intrusion detection. DACM is flexible, upgradable, and platform independent. It decreases the audit load and the time cost required to obtain effective situational understanding; increases the coverage of the attack space and forensics; and improves the ability to distinguish the serious attack from the less important ones or identify the kind of needed reaction. DACM can also be used to enhance the early detection capability of APT. Finally, DACM can be used as a real time system with minor modifications. We think that this is a promising approach successfully combining correlation techniques with agent technology in intrusion detection systems in order to provide higher security for computer networks and internet services.

Keywords:

Intrusion Detection, Alert Correlation, Multi-Agent Systems, Learning Agent, Reduction Rate

Acknowledgements

First, thanks to Allah (God) who made me able to accomplish this work, I sincerely express my deepest gratitude to my thesis supervisors, **Dr. Hani Mahdi**, Professor of Computer Engineering, Faculty of Engineering, Ain Shams University, and **Dr. Ismail Abdel Ghafar**, Professor of Computer Engineering, Military Technical College, and **Dr. Ayman Bahaa**, Associate Professor of Computer Engineering, Faculty of Engineering, Ain Shams University. I was fortunate to have met such outstanding scholar supervisors. I like to express my thankfulness for their kind supervision and offering unfailing support, invaluable advices and comments and helpful and useful discussions in selecting the interesting point and during the preparation of this thesis. I owe a special acknowledgment to them for giving me a lot of their time during the years of preparing this thesis. I could never had done it without their support, technical advice and suggestions, thorough reading of all my work.

I would like to thank the Center for Education and Research of Information Assurance and Security (CERIAS), Purdue University, USA. I appreciate the valuable support of the CERIAS executive director **Prof. Eugene Spafford**, the generous effort of his staff especially Information Assurance Research Engineer **Keith Watson**, for their cooperation during my scholar visit to the Center. They provided me with great resources to capture and collect the data needed for this work. Special Thanks to my friend Glenn Glover who guided me to that center.

I appreciate the assistance and input from my colleagues in ORC and their support during this work, special thanks to **Ahmed Abdel Sabour** and **Galal Mohamed** for their help during implementing the proposed model.

I will never be able to thank my mother and my family enough for supporting me during my whole life. I tried to accomplish this work to make them proud of me. Finally, I am very grateful to my wife **Dalia**, and my lovely two kids, **Asser** and **Sama**, for their patient support especially during my scholar visit, sacrifices, sustained moral support, and encouragement. I always thank my God for blessing me with such a wonderful family. I would like to dedicate this work specifically to them and my mother and my whole family.

Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Computer and Systems Engineering Department.

The work included in this thesis was carried out by the author at Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date : 07 / 07 / 2011

Signature :

Name : Ayman Elsayed Elsayed Taha

Table of Contents

Abstract		1
Table of Contents.		v
List of Figures		ix
List of tables		xii
List of Algorithms		xiii
List of Abbreviation	on	xiv
Chapter One: In	ntroduction	1
1.1 Intrusion	Detection and Response Systems	1
1.1.1 IDS T	erminology and Parameters	1
1.1.2 IDS L	imitations	2
1.1.3 Intrusi	ion Detection Alerts Correlation	2
1.1.4 Agent	s in IDS	3
1.2 IDS Cor	relation Problem Definition	3
1.3 The Prop	osed Model	4
1.4 Methodo	ology	5
1.5 Contribu	tions	5
1.6 Dissertat	ion Organization	6
Chapter Two: L	iterature Survey and Related work	7
2.1 The Impo	ortance of Security and Intrusion Detection	7
2.1.1 Securi	ty Mechanism	8
2.1.2 Intrusi	ion Detection Systems	9
2.1.3 Intrusi	ion Detection Correlation Systems	14
2.1.4 Recen	t Cyber Security Attacks	15
2.2 Basic Co	oncepts of Data Correlation	19
2.2.1 Alert 1	normalization	23
2.2.2 Alert a	aggregation and Fusion	24
2.2.3 Alert	verification and Prioritization	26
2.3 Alerts Co	orrelation Techniques	28
2.3.1 Correl	ation of Attack Scene	29
2.3.2 Correl	ation of Pre and post conditions	31

2.3.3	Casual analysis Correlation based on Statistical Technique	ies
		33
2.3.4	Distributed Correlation	34
2.4 A	lert Correlation Limitations	36
2.5 A	gents in IDS and Correlation	37
2.6 C	omprehensive Approach Model for IDS Alert Correlation	39
Chapter Th	ree: Distributed Agent Correlation Model	43
3.1 D	Pistributed Agent Correlation Model Description	43
3.1.1	IDSs Correlation Agents	44
3.1.2	INFOSEC Tools Agents	46
3.1.3	System and Application Logs Agents	48
3.1.4	DACM Central Agent	50
3.1.5	Formal Description for Central Agent	51
3.1.6	Response Agent	52
3.1.7	Learning Agent	52
3.1.8	The Knowledge Base and Security Policy	53
3.2 D	ACM Components	54
3.3 D	ACM Knowledge Base	55
3.3.1	System Parameters and Role Base Tables	55
3.3.2	Alerts Table	56
3.3.3	Vulnerability Scanner	56
3.3.4	Performance Monitors Tables	57
3.3.5	Firewall Log Files Tables	57
3.3.6	System Audit Files Tables	58
3.3.7	Services Log Files Tables	58
3.3.8	Output Tables:	58
3.4 D	ACM Features	59
3.5 In	mplementation Scope and Performance Enhancement	61
Chapter For	ur: DACM Design and Algorithms	63
4.1 II	OS Alert Correlation	63
4.1.1	IDS Alert Correlation Performance Analysis	63
4.2 N	Nodified CAM Time	64

4.2.1	Agent Based Correlation Model	65
4.2.2	Dynamic Parallel Correlation Model	72
4.3 I	DACM Individual Agents	76
4.3.1	IP Address Normalization	77
4.3.2	Firewall Agent	79
4.3.3	FTP local Agents	81
4.3.4	SSH Agent	85
4.3.5	Error Log Agent	87
4.3.6	Access log Agent	90
4.4 I	DACM Central Agent	95
4.5 I	mplementation Environment	101
Chapter Fi	ve: DACM Results and Analysis	102
5.1	CRIAS Data Set	102
5.1.1	CERIAS Network Description	102
5.1.2	Data Description	104
5.1.3	Attacks	106
5.1.4	Attack scenarios	106
5.2 I	DS Alerts Correlation Results	108
5.2.1	IDS correlation Model	109
5.2.2	CAM Results	110
5.2.3	ABCM results	112
5.2.4	DPCM Results	113
5.2.5	IDS Alert Correlation Techniques Performance	115
5.3 I	DACM Components Results	121
5.4 I	DACM Central Agent Results	123
5.5 I	DACM Evaluation and Assessment	132
5.5.1	DACM Limitation	132
5.5.2	DACM Assessment	133
5.6 I	Practical Implementation Issues	134
Chapter Si	x: Conclusions and Future Work	135
6.1	Conclusions	135
6.2 I	Future Work	138

APPENDIX A	139
Appendix B: DACM Agents Formal Description	157
References	163

List of Figures

FIGURE 2.1 COMPERHENSIVE APPROACH MODEL FOR IDS ALERT	
CORRELATION	40
FIGURE 3.1DACM BLOCK DIAGRAM	44
FIGURE 3.2 IDS CORRELATION AGENTS	45
FIGURE 3.3 IDS ALERTS OUTPUT USING BASE FOR SNORT	45
FIGURE 3.4 FIREWALL ROUTER LOG FILE	46
FIGURE 3.5 INFOSEC TOOLS CORRELATION AGENTS	48
FIGURE 3.6 FTP LOG FILES	49
FIGURE 3.7 SYSTEM AND APPLICATION LOGS CORRELATION AGENTS	49
FIGURE 3.8 STANDARD ALERT ATTRIBUTES	51
FIGURE 3.9 LEARNING AGENTS BLOCK DIAGRAM	53
FIGURE 3.10. DACM COMPONENTS STRUCTURE	54
FIGURE 3.11 IDSS CORRELATED ALERTS TABLE ATTRIBUTES	56
FIGURE 3.12 VULNERABILITY SCANNER ALERT ATTRIBUTES	56
FIGURE 3.13 NESSUS OUTPUT FOR VULNERABILITY SCANNER	56
FIGURE 3.14 PERFORMANCE MONITOR ALERT ATTRIBUTES	57
FIGURE 3.15 FIREWALL OUTPUT LOG FILE	57
FIGURE 3.16 FIREWALL ALERT ATTRIBUTES	57
FIGURE 3.17 SYSTEM AUDIT ALERT ATTRIBUTES	58
FIGURE 3.18 SERVICES LOG ALERTS ATTRIBUTES	58
FIGURE 3.19 IMPLEMENTATION SCOPE OF DACM COMPONENTS	62
FIGURE 4.1 ABCM CORRELATION MODEL BLOCK DIAGRAM	65
FIGURE 4.2 ABCM SEQUENTIAL LEARNING PHASE	67
FIGURE 4.3 ABCM PARALLEL LEARNING PHASE	67
FIGURE 4.4 CERIAS ABCM PARALLEL LEARNING RESULT	68
FIGURE 4.5 ABCM CORRELATION PHASE	70
FIGURE 4.6 DPCM BLOCK DIAGRAM	72
FIGURE 4.7 DPCM CORRELATION STAGES	
FIGURE 4.8 CERIAS DPCM CORRELATION EXAMPLE	74

FIGURE 4.9 DACM INDIVIDUAL AGENTS	76
FIGURE 4.10 FIREWALL ROUTER LOG CONTENTS	79
FIGURE 4.11 FTP LOG FILE EXAMPLE	81
FIGURE 4.12 FTP TRANSFER LOG FILE EXAMPLE	83
FIGURE 4.13 SSH LOG FILE "INETDLOG" EXAMPLE	85
FIGURE 4.14 ERROR LOG CONTENTS	88
FIGURE 4.15 HTTP ACCESS LOG FILE	91
FIGURE 4.16 ACCESS LOG TABLE	92
FIGURE 4.17 OSHTTP ERROR LOG FILE	92
FIGURE 4.18 MISSING EXAMPLE	94
FIGURE 4.19 DACM CENTRAL AGENT RESULTS	96
FIGURE 5.1 CERIAS NETWORK BLOCK DIAGRAM	103
FIGURE 5.2 SNORT IDS ALERTS	108
FIGURE 5.3 IDS ALERT CORRELATION INTERFACE	109
FIGURE 5.4 AF CORRELATION RESULT	110
FIGURE 5.5 TR CORRELATION RESULT	111
FIGURE 5.6 FINAL CAM CORRELATION RESULT ⁸	111
FIGURE 5.7 ABCM LEARNING PHASE	112
FIGURE 5.8 ABCM'S CORRELATION PHASE RESULTS	113
FIGURE 5.9 DPCM CORRELATION STAGES RESULT	114
FIGURE 5.10 DPCM FINAL CORRELATION RESULT	115
FIGURE 5.11 REDUCTION RATES COMPARISON OF IDS CORRELATION	
TECHNIQUES	117
FIGURE 5.12 CORRELATION TIMES COMPARISON OF IDS CORRELATION	NC
TECHNIQUES	120
FIGURE 5.13 CORRELATION TIMES COMPARISON OF IDS CORRELATION	NC
TECHNIQUES	121
FIGURE 5.14 SSH AGENT RESULT	122
FIGURE 5.15 ABCM RESULT FOR SPECIFIC IP AS PART OF DACM ¹³	122
FIGURE 5.16 DACM DAILY RESULTS	123

FIGURE 5.17 DACM IP REPORT FORM ABCM IDS CORRELATED ALERTS.	125
FIGURE 5.18 DACM IP REPORT FORM HTTP ATTACK ¹⁵	125
FIGURE 5.19 DACM MAXIMUM PRIORITY REPORT	126
FIGURE 5.20 LOW AND SLOW ATTACK SUMMARY	127
FIGURE 5.21 LOW AND SLOW ATTACK FOR 192.160.165.222 ¹⁷	127
FIGURE 5.22 LOW AND SLOW ATTACK FOR 216.129.119.45	128
FIGURE 5.23 DACM SUMMARY REPORT ¹⁸	128
FIGURE 5.24 DACM SUMMARY RESULTS CHART	131
FIGURE 5.25 DACM PERCENTAGE SUMMARY RESULTS CHART	132

LIST OF TABLES

TABLE 2.1 CYBER ATTACKERS COMPARISON	19
TABLE 2.2 SOURCES OF INTRUSION DETECTION DATA CORRELATION	21
TABLE 2.3 CAM COMPONENTS REDUCTION RATE FOR DIFFERENT	
DATASETS	41
TABLE 4.1 FIREWALL ATTACK TABLE	80
TABLE 4.2 FTP ATTACK TABLE	83
TABLE 4.3 FTP TRANSFER ATTACK TABLE	85
TABLE 4.4 SSH TRANSFER ATTACK TABLE	87
TABLE 4.5 HTTP ATTACK TABLE RECORD	90
TABLE 4.6 DAILY REPORT TABLE ATTRIBUTES	98
TABLE 5.1 SNORT IDS ALERT ATTRIBUTES	109
TABLE 5.2 ALERT CORRELATION REDUCTION RATES COMPARISON	116
TABLE 5.3 CORRELATION TIME COMPARISON FOR IDS ALERT	
CORRELATION MODELS ORDERED BY DATE OF ALERTS	118
TABLE 5.4 CORRELATION TIME COMPARISON FOR IDS ALERT	
CORRELATION MODELS ORDERED BY ALERTS COUNT	119
TABLE 5.5 DACM SUMMARY RESULT	129
TABLE 5 6 DACM PERCENTAGE SUMMARY RESULT	130

List of Algorithms

ALGORITHM 4-1 LEARNING PHASE	69
ALGORITHM 4-2 ABCM CORRELATION PHASE	71
ALGORITHM 4-3 DPCM ALGORITHM	75
ALGORITHM 4-4 SAVE IP FUNCTION	78
ALGORITHM 4-5 FIREWALL AGENT	80
ALGORITHM 4-6 FTP AGENT	82
ALGORITHM 4-7 FTP TRANSFER AGENT	84
ALGORITHM 4-8 SSH AGENT	86
ALGORITHM 4-9 HTTP AGENT	89
ALGORITHM 4-10 ACCESS LOG AGENT	93
ALGORITHM 4-11 MISSING LOG AGENT	95
ALGORITHM 4-12 DACM CENTRAL AGENT	97