IMPACT OF SUCCESSFUL PERCUTANEOUS CORONARY INTERVENTION TO PATIENTS WITH CHRONIC TOTAL OCCLUSION ON INHOSPITAL MORTALITY AND MORBIDITY

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented By
Esam Abdullah Mujalli Abdullah
M.B.B.Ch

Supervised By

Prof. Dr. Adel Mohammed Kamal El-Etriby

Professor of Cardiology
Faculty of Medicine - Ain Shams University

Doctor: Wail Mostafa EL-Nammas

Assistant Professor of Cardiology
Faculty of Medicine - Ain Shams University

Doctor: Sherief Mansor Sliman

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2011

تأثیر التدخل العلاجي التاجي عبر الجلد الناجح على مرضى القفل الكلي المزمن أثناء تواجدهم بالمستشفى على الوفيات و المرض

رسالة

توطئة للحصول على درجة الماجستير في أمراض القلب و الأوعية الدموية

مقدمة من

الطبيب/ عصام عبدالله مجلي عبدالله بكالوريوس الطب و الجراحة العامة جامعة العلوم و التكنولوجيا – اليمن

تحت إشراف

الأستاذ الدكتور: عادل محمد كمال الإتربي أستاذ أمراض القلب و الأوعية الدموية كلية الطب - جامعة عين شمس

الدكتور: وائل مصطفى النماس

أستاذ مساعد أمراض القلب و الأوعية الدموية كلية الطب - جامعة عين شمس

الدكتور: شريف منصور سليمان

مدرس أمراض القلب و الأوعية الدموية كلية الطب - جامعة عين شمس

كلية الطب

$L_{\mathsf{ist}} \, \mathsf{of} \, C_{\mathsf{ontents}}$

Title	Page No.
Introduction	1
Aim of the work	3
Review of literature	
• Introduction to chronic total occlusion	4
Percutaneous angioplasty for coronary artery disease	10
Percutaneous coronary intervention to chronic total occlusion	28
Patients and methods	57
Result	64
Discussion	78
Limitations of the study	84
Summary	85
Conclusion and recommendations	88
References	89
Arabic summary	

$L_{\mathsf{ist}} \, \mathsf{of} \, T_{\mathsf{ables}}$

Tab. No.	Title	Page No.
Table (1):	Types of Coronary Stents and Selected Anti-Restenosis Devices	17
Table (2):	Predictors of long term mortality after attempted revascularization of a chronic total occlusion	31
Table (3):	Techniques designed for chronic total occlusion angioplasty	40
Table (4):	Baseline data for the whole study series:	65
Table (5) :	Angiographic and procedural data for the whole series:	66
Table (6):	Impact of baseline and angiographic data on the incidence of poor TIMI flow after percutaneous coronary intervention:	69
Table (7):	Impact of baseline and angiographic data on the incidence of residual stenosis after percutaneous coronary intervention:	72
Table (8) :	Impact of baseline and angiographic data on failure of percutaneous coronary intervention:	75

$L_{\mathsf{ist}} \, \mathsf{of} \, F_{\mathsf{igures}}$

Fig. No.	Title Page No.
Figure (1):	Schematic diagram of a cross section of a totally occluded coronary artery segment
Figure (2):	Lifesaving recruitment of reverse collaterals after 6 years of dormancy29
Figure (3):	Mortality from three different registries with average follow-up periods of 1 year
Figure (4):	Significant adverse events during a 5 year follow up after a randomized trial with percutaneous transluminal coronary angioplasty (PTCA) or a conservative recanalization attempts for a chronically occluded left anterior descending coronary artery
Figure (5):	Mortality relative to the patency of the infarct related artery in trials with various follow up (FU) durations35
Figure (6):	When the conventional J at the tip of the guidewire (A) becomes straightened out, it is useless39
Figure (7):	Frontrunner is a dedicated tool for chronic occlusion angioplasty41
Figure (8):	Success rates of recanalization attempts for chronic total coronary occlusions with (green bars) or without (purple bars) the most important risk factors

$L_{\text{ist of }}F_{\text{igures (Cont...)}}$

Fig. No.	Title	Page	No.
Figure (9):	Major complications in a single center experience over 20 years comparing patients who had an angioplasty attempt at treating a chronic total occlusion with patients who had an attempt at treating stenoses only (i.e. matched patient cohorts).	; ; !	47
Figure (10):	Angiographically determined recurrence after balloon angiography (top) or stenting (bottom) for chronic total coronary occlusions in randomized trials	: [51
Figure (11):	Randomized trial comparing the sirolimus-eluting Cypher stent with its bare metal platform (BMS) in 200 patients with chronic total occlusion)	52
Figure (12):	TIMI flow grade before PCI		67
Figure (13):	TIMI flow grade after PCI		68
Figure (14):	Residual stenosis after PCI		68
Figure (15):	Age		70
Figure (16):	Serum Creatinine		70
Figure (17):	Impact of baseline and angiographic data on the incidence of poor TIMI flow after percutaneous coronary intervention	7	71
Figure (18):	Age		73
Figure (19):	Serum creatinine		74

$L_{\text{ist of }}F_{\text{igures (Cont...)}}$

Fig. No.	Title	Page No.
Figure (20):	Impact of baseline and angiographic data on the incidence of residual stenosis after percutaneous coronary intervention.	l 7
Figure (21):	Age	76
Figure (21):	Serum Creatinine	76
Figure (22):	Impact of baseline and angiographic data on failure of percutaneous coronary intervention	3

INTRODUCTION

emarkable progress in percutaneous management of coronary artery disease has been achieved over the last 3 decades. The scaffolding properties of coronary have resulted in stents percutaneous coronary intervention (PCI) becoming a predictable procedure, with reduced rates of acute closure and late restenosis compared with balloon alone.(1,2) angioplasty recently, the site-specific delivery of antiproliferative agents from drug-eluting stents has been demonstrated to markedly attenuate vascular responses leading neointimal hyperplasia, further reducing the occurrence of clinical and angiographic restenosis to <10% in most patients. (3,4) PCI in patients with acute coronary syndromes and acute myocardial infarction (AMI) has also been proven to save lives, reduce rates of myocardial infarction (MI), and enhance quality of life compared with alternative treatment modalities. (5-7)

Any definition of coronary CTO must consider the degree of lumen narrowing, antegrade blood flow grade, and the degree of occlusion. CTOs are characterized by significant atherosclerotic vessel narrowing with lumen compromise that results in either complete interruption of antegrade blood flow as assessed by coronary angiography (Thrombolysis in MI [TIMI] grade 0 flow), also known as true total occlusion, or with minimal

contrast peneteration through the lesion without distal opacification (TIMI grade 1 flow), frequently referred to as functional total occlusion. In the absence of serial angiograms, the duration of coronary occlusion is difficult to specify with certainty and instead must be estimated from available clinical information related to the timing of the onset that caused the occlusion, eg, acute MI or sudden change in angina pattern with ECG changes consistent with the location of occlusion. However, many patients the age of CTO cannot be determined with confidence. Furthermore, the temporal criterion used to define a CTO has varied widely in prior reports, typically angina from > 2 weeks^(8,9) to > 3months⁽¹⁰⁾, which in part explains interstudy differences in lesion characteristics and procedural data. In general, a total occlusion of duration > 3 months must be considered chronic.

Chronic total occlusions (CTO) are found in approximately one-third of patients with significant coronary disease who undergo angiography. Despite the introduction of novel technologies, newer guidewires, and a tremendous advancement of technical skills, percutaneous coronary intervention (PCI) for CTO remains a challenge. Even with stenting, there remains a significant rate of both restenosis (32% to 55%) and reocclusion (8% to 12%). (11-15)

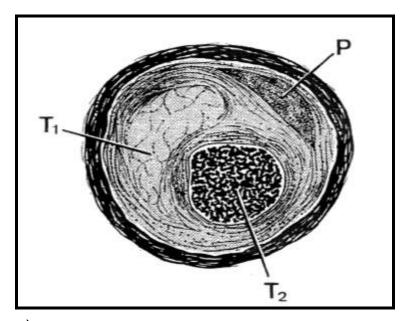
AIM OF THE WORK

In a retrospective study design we sought to explore the impacts of successful percutaneous coronary intervention to patients with chronic total occlusion on in-hospital mortality and morbidity.

Chapter 1

INTRODUCTION TO CHRONIC TOTAL OCCLUSION

Definition of chronic total occlusion:


ny definition of coronary CTO must consider the degree of lumen narrowing, antegrade blood flow degree of occlusion. CTOs are and the characterized by significant atherosclerotic vessel narrowing with lumen compromise that results in either complete interruption of antegrade blood flow as assessed by coronary angiography (Thrombolysis in MI [TIMI] grade 0 flow), also known as true total occlusion, or with minimal contrast peneteration through the lesion without distal opacification (TIMI grade 1 flow), frequently referred to as functional total occlusion. In the absence of serial angiograms, the duration of coronary occlusion is difficult to specify with certainty and instead must be estimated from available clinical information related to the timing of the onset that caused the occlusion, eg, acute MI or sudden change in angina pattern with ECG changes consistent with the location of occlusion. However, many patients the age of CTO cannot be determined with confidence. Furthermore, the temporal criterion used to define a CTO has varied widely in prior

reports, typically angina from > 2 weeks^(8,9) to > 3 months⁽¹⁰⁾, which in part explains interstudy differences in lesion characteristics and procedural data. In general, a total occlusion of duration > 3 months must be considered chronic.

Histology and pathophysiology of chronic total occlusion:

Histology:

A chronic total occlusion has several anatomic components^(16,17). An atherosclerotic plague is invariably present as a major or minor part of the luminal obstruction. Thrombus is the complementary element. There may be a single clot of uniform structure and age associated with fibrointimal proliferation. The latter situation signifies the occurrence of prior thrombi from previous plaque fissures that might or might not have been totally occlusive. In cases in which they had been totally occlusive, these fissures were partially recanalized before subsequently re-occluding (Fig. 1).

Figure (1): Schematic diagram of a cross section of a totally occluded coronary artery segment. There are thrombotic foci (T_1 and T_2) of different ages, indicating a first plaque (P) fissure with an organized and heavily fibrosed thrombus (T_1) and a more recent one causing complete occlusion (T_2). The extent of fibrosis of the most recent thrombus is the decisive factor in determining the chance of successful balloon recanalization.

The most recent thrombus is assumed to obstruct the last lumen that had been patent up to the final complete occlusion of the particular coronary segment. The recanalization equipment should be passed through this thrombus. The texture of the thrombus is crucial for success or failure of coronary angioplasty. The older and the more fibrosed a clot is, the smaller chance to cross it safely⁽¹⁸⁾.

Spontaneous recanalization of a totally occluded segment may occur by lysis of a clot, development of several new channels through the thrombus (intraarterial arteries), dilatation of the vasa vasorum, or a combination of these mechanisms. Angiographically, such a recanalization can be readily distinguished from a total occlusion by the presence of antegrade flow, which may coexist with retrograde filling of the distal part of the vessel (demonstrable by angiography in case of ipsilateral collaterals). However, it cannot be discerned which of the aforementioned mechanisms is active for antegrade flow, and the situation is difficult to differentiate from a subtotal occlusion. Tackling a subtotal occlusion that had never been completely occluded before and that shows no collateralization creates the risk of an acute infarction resulting from abrupt vessel closure; tackling a recanalized segment does not. Conversely, it is usually easy to pass a subtotal occlusion with a coronary guidewire, but it may be tedious or impossible even with sophisticated equipment to pass a recanalized segment because the of recanalization mav consist several tortuous micochannels in densely fibrosed tissue or be simulated by copious vasa vasorum⁽¹⁸⁾.

Pathophsiology:

Collaterals and Preservation of Myocardial Function:

Well-developed collaterals at the time of the acute occlusion of the coronary artery avoid cell death of the subtended myocardium. Poor collaterals may still limit necrosis to the least perfused layers, usually the subendocardium. ofThe performance collaterals correlates well with duration of occlusion and initial lesion severity. In other words, collaterals are quite common in patients with long-standing coronary artery disease and subtotal occlusion of the vessel in question but are rare in young patients with mild coronary artery disease suffering an acute thrombotic coronary occlusion from a ruptured plaque rather than a significant stenosis(18). There a greater propensity spontaneous recanalization in the young patient with an occlusion based on an insignificant stenosis. They often present with a recanalized vessel but completely lost myocardial function. The typical chronic occlusion to be tackled is therefore one in an elderly patient with established coronary artery disease, complex anatomy in and around the occlusion, and a fairly well-preserved distal myocardium⁽¹⁸⁾.