Effect of Implant Abutment Modification on Excess Cement Extrusion at the Crown-Abutment Margin Using two Types of Cements

Thesis

Submitted for fulfillment of the requirements for master degree in Crown & Bridge Department

Ain Shams University

By

Hatem Ezzat Mohamed Abd El Moety

BD.Sc (Ain Shams University 2010)

Faculty of Dentistry
Ain Shams University
2016

Supervisors

Prof.Tarek Salah Morsy

Assistant Professor of Crown & bridge Department

Head of Crown & Bridge Department,

Faculty of Dentistry, Ain Shams University

Dr.Maged Mohamed Zohdy

Lecturer, Crown & Bridge Department, Faculty of Dentistry, Ain Shams University

Acknowledgment

I would like to express my sincere gratitude and grateful appreciation to Professor Dr. Tarek Salah Morsy Professor of crown&bridge and head of crown and bridge department, faculty of dentistry Ain Shams University for his extraordinary supervision and guidance.

And I would like to thank Dr.Maged mohamed zohdy Lecturer of crown and bridge department, Faculty of dentistry Ain shams University for his excellent advice and help during the study and it was an honor to work under his supervision.

Finally, I would like to thank All my professors, friends and Colleagues in the crown and bridge department for their help and support.

Dedication

I would like to dedicate my work to my dear

parents

my brothers

and my lovely wife.

List of Contents

Contents

List of F	igures	III
List of ta	bles	V
Introduc	tion	1
Review o	of Literature	3
Ceme	nt retained vs screw retained restorations	4
Peri-ii	mplant mucositis & Peri-implantitis	7
Ceme	ntation of implant restorations	8
A.	Biology	8
B.	Tissue depth	10
C.	Cement types	10
Comp	lications of cement-retained implant restorations	12
1.	Marginal adaptation	12
2.	Excess cement	13
Denta	l Cements	15
Perma	nent vs. temporary cements	15
Metho	ods to avoid cementation problems:	19
1.	Screw-retained restorations:	19
2.	Location & amount of used cement:	19
3.	Crown venting:	21
4.	Copy abutments:	22
5.	Abutment Modifications:	23
Statemer	nt of problem	26
Aim of t	he study	27
Material	s & Methods	28

A.	Materials:	28
B.	Methodology:	29
Resul	ts	46
1.	Excess cement	46
Dat	a analysis and interpretation	46
2.	Marginal adaptation	50
Dat	a analysis and interpretation	50
Discus	ssion	55
Sumn	nary	62
Concl	usions	64
Recor	nmendations	65
Refere	ences:	66
Appei	ndix	81

<u>List of Figures</u>

Figure 1: The drilling machine with arrow pointing to the adjustable plate 29
Figure 2:Acrylic blocks fabricated to hold implant components30
Figure 3:Implant components used in the study
Figure 4:Assembly consists of (Acrylic block+ implant analog+ anatomic imlant
abutment)
Figure 5: Crowns of standard dimensions, shape and cement gap milled
fromCopraTemp blanks, Whitepeaks dental solutions, GmbH & Co. KG,
Germany
Figure 6: PMMA crowns of same dimensions for each abutment checked for
proper seating. 32
Figure 7: Modifications for implant abutments & grouping (Front view)34
Figure 8: Modifications for implant abutments & grouping (Top view) 34
Figure 9: DentoTemp temporary resin cement
Figure 10: TotalCem permanent resin cement
Figure 11: Vertical marks on abutment and crown to ensure proper seating 36
Figure 12: Assembly weighed before cementation
Figure 13: Hand held digital microscope (dinolite, Taiwan)
Figure 14: Image of ruler used for conversion of units (pixels to microns)39
Figure 15: Image with digital microscope to buccal margin before cementation
with 45X magnification
Figure 16: Cement injected in linear pattern on a 2 cm graded paper pad40
Figure 17: Cement collected from paper pad using plastic instrument40 $$
Figure 18: Mixed cement ploaced into intaglio and margins of crown41
Figure 19: Initial finger pressure was applied suring crown seating41
Figure 20: Universal testing machine (Model LRX-Plus, Lloyd Instruments,
Fareham, UK)
Figure 21: Standard load (50 N) applied for 5 minutes
Figure 22:Light curing of resin cement using 3M Elipar light curing device $\dots 43$
Figure 23: Assemblies after complete setting of cements
Figure 24: Assembly after removal of excess cement
Figure 25: Marginal gap distance was measured after excess cement removal. 44
Figure 26: Correlation between type of cement, type of abutment and extruded
cement removed mean values (g)
Figure 27: Correlation between type of abutment, type of cement and extruded
cement removed mean values (g)

Figure 28: Correlation between type of cement, type of abutment and margina	al
discrepancy mean values (µm)	.51
Figure 29: Correlation between type of abutment, type of cement and margina	al
discrepancy mean values (μm)	.52

List of tables

Table 1: Materials used in this study	28
Table 2: Experimental factorial analysis	36
Table 3: Data collected for means and standard deviations	46
Table 4: Tests of Between-Subjects Effects	47
Table 5: Multple comparisons- Schefee method	49
Table 6: Data collected for means and standard deviations	50
Table 7: Tests of Between-Subjects Effects.	51
Table 8: Multiple comparisons- Schefee method.	52

Introduction

Implant dentistry has seen rapid and remarkable progress in recent years. The quest for predictable long-term results has raised several questions concerning the materials used as well as the techniques followed in clinical practice.

One of these questions concerns the type of connection between the restoration and the implant. ^(1,2) Implant restorations can be screwretained or cement-retained. Some authors advocate the screw-retained prosthesis, ⁽³⁾ as they offer reversibility, more stability and security at the implant-abutment prosthetic interface. ⁽⁴⁻⁶⁾

During the life of implant prosthesis, the clinician may need to remove the restoration for hygiene, repairs, and abutment screw tightening, ⁽⁷⁾ and screw-retained designs make all of these procedures easily achievable.

Implant cementation as a mean of attaching the coronal restoration to the implant fixture is also popular and widely used by many clinicians and has become a routine dental procedure due to their relative simplicity, elimination of prosthesis screw loosening, passivity of fit, improved esthetics, easier control of occlusion, and economy compared to screw-retained prostheses. (8) Multiple research studies have highlighted problems with cement-retained restorations related to marginal seal and excess cement. (9-11)