

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.118

CAC FOR ATM NETWORKS USING NEURAL NETWORKS

by

Md. Mahboob Alam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

sion of

Prof. Dr. Abdel-Wahab F. Hassan

Electronics & Communications
Department
Faculty of Engineering
Cairo University

Dr. Mona Mahmoud Riad
Electronics & Communications
Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT December 1997

3 14029 15

CAC FOR ATM NETWORKS USING NEURAL NETWORKS

by

Md. Mahboob Alam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

IN
ELECTRONICS AND COMMUNICATIONS
ENGINEERING

Approved by the Examining Committee:

Prof. Dr. Abdel-Wahab Fayez Hassan,

Thesis Main Advisor

Prof. Dr. Ahmed Mostafa EL-Sherbini

Member

Prof. Dr. Mohamed Zaki Abdel Magid

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
December 1997

.

.

.

CONTENTS

List of Tables	. vii
List of Figures	viii
List of Symbols and Abbreviations	xi
Forward	xiii
Acknowledgments	xiv
Abstract	xv
Chapter 1	
1. Introduction	1
1.1 ATM Networks	1
1.2 Objectives of Thesis	5
1.3 Thesis Structure	6
Chapter 2	
2. ATM Networks	8
2.1 Introduction	8
2.2. Rationale for ATM Development	9
2.3 ATM Concept	· 12
2.4 ATM Layered Model	16
2.4.1 Physical layer	17
2.4.2 ATM layer	17
2.4.3 ATM adaptation layer	19

2.5 ATM Traffic Management	21
2.5.1 ATM Service Categories	21
2.5.2 Congestion Control	21
2.5.2.1 Preventive Congestion Control	23
2.5.2.1 (a) Generic flow control	23
2.5.2.1 (b) Call admission control	24
2.5.2.1 (c) Usage/Network parameter control	24
2.5.3 Reactive Control	24
2.5.3.1 Explicit forward congestion indication (EFCI)	25
2.5.3.2 Rate based flow control	25
2.5.3.3 Credit based flow control	26
Chapter 3	
3. Neural Networks and its applications in ATM networks	27
3.1 Introduction	27
3.2 Neural Networks in ATM Traffic Control	34
3.2.1 Optimized Routing Using Feedback Neural Networks	34
3.2.2 Optimized Packet Scheduling in input queues Using Feedback Neural Network	35
3.2.3 Neural Networks for Traffic Policing	38
3.2.4 Congestion Control by Neural Networks	39
3.2.5 Neural Networks for Connection Admission Control	40
A. Classical Methods	40
A.1. CAC based on user's specified traffic parameters	40

A.2 A Dynamic CAC Technique	41
A.3. A CAC strategy using equivalent bandwidth A.4. CAC using bándwidth increasing algorithm	41 42
B. Neural Network Methods	42
B.1. Learning control method for admission control	42
B.2. Hybrid admission control	43
B.3. A moving window training approach to call control	44
3.3 Conclusion	45
Chapter 4	·
4. Controller Design and Model Assumptions	46
4.1 Introduction	46
4.2 Call and Connection Control Operation	49
4.3 Communication Protocol in ATM Network	50
4.4 ATM Traffic Parameters	52
4.5 ATM Traffic Source Modeling	52
4.5.1 On/Off Sources	53
4.6 ATM Node Modeling	55
4.7 Neural Network Design	57
4.7.1 Neural Network Inputs	61
4.7.2 Neural Network Output and decision threshold	63
4.8 Conclusion	64
Chapter 5	
5. Experimentation and Results	65
5.1 Introduction	65

5.2 Simulation	66
5.2.1 Simulator Description	67
5.2.2 Specified Constants	71
5.2.3 Calls' Traffic Parameters Generators	71
5.3 Result Methodology	74
5.3.1 Generation of data for training and testing	74
5.4 Evaluation Measures	78
5.4.1 Bad Accepts	79
5.4.2 Bad Rejects	79
5.5 Results	80
Chapter 6	
6. Conclusions and future research	102
5.1 Conclusions	102
5.2. Future Research	104
References	106
Appendix 1	110

•••

List of Tables

Table 1 For model 1 using six statistical parameters as nn inputs	81
Table 2 For model 1 using six statistical parameters as nn inputs	81
Table 3 For model 1, considering the same traffic situation but with new parameters as nn inputs	81
Table 4 For model 1, considering the same traffic situation but with new parameters as nn inputs	82
Table 5 For model 1 with new parameters but with data simulated with the simulator	82
Table 6 For model 1 with new parameters but with data simulated with the simulator	82
Table 7 For new model and new parameters as nn input	83
Table 8 For new model and new parameters as nn input	83
Table 9 Training and Testing results for changing numbers of hidden nodes	83

· • . .