DYNAMIC ANALYSIS OF AC MACHINES USING COMBINED FEM-CIRCUIT MODELING

By **Eng. Mohamed Sayed Ahmed Shalaby**

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2017

DYNAMIC ANALYSIS OF AC MACHINES USING COMBINED FEM-CIRCUIT MODELING

By

Eng. Mohamed Sayed Ahmed Shalaby

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Khairy Farahat Ali

Dr. Ahmed Ali Soliman Huzayyin

Electrical Power and Machines
Department
Faculty of Engineering, Cairo University

Electrical Power and Machines
Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

DYNAMIC ANALYSIS OF AC MACHINES USING COMBINED FEM-CIRCUIT MODELING

By **Mohamed Sayed Ahmed Mohamed Shalaby**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

Electrical Power and Machines Engineering

Approved by the Examining Committee	
Prof. Dr. Khairy Faraht Ali Helwa,	Thesis Main Advisor
Prof. Dr. Mahmoud Mohamed Mahmo	oud Abdel-Hakim, Internal Examiner
Prof. Dr. Rizk Mohamed El-Sayed Ha Professor at Ein-Shams Univerity, and Head University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer:** Mohamed Sayed Ahmed Mohamed Shalaby

Date of Birth: 10/11/1984 Nationality: Egyptian

E-mail: mohamedshalaby84@gmail.com

Phone: 01001714978

Address: 176 Family Housing 1, Fifth District, New Cairo.

Registration Date: 1/10/2011 Awarding Date: //2017

Degree: Doctor of Philosophy

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Khairy Farahat Ali Helwa Dr. Ahmed Ali Soliman Huzayyin

Examiners:

Prof. Dr. Khairy Farahat Ali Helwa

Prof. Dr. Mahmoud Mohamed Mahmoud Abdel-Hakim Prof. Dr. Rizk Mohamed El-Sayed Hamouda (Ein-Shams

University)

Title of Thesis: Dynamic Analysis of AC Machines Using Combined FEM-Circuit Modeling

Key Words: Modelling of Electric Machines – coupled FEM-Circuit model – Cross magnetic saturation – Synchronous Reluctance Motor – Self-excited Induction Generator

Summary:

In this thesis, accurate, simple and fast model of AC machines is presented. The proposed model can describe and explore the machine's behavior and performance accurately. The proposed models are categorized as coupled FEM-Circuit modeling approaches. A so called combined FEM-Circuit (or staged FEM-Circuit) model is proposed to investigate the model of SynRM including effect of cross-magnetic saturation. In addition, a coupled FEM-Circuit model is introduced to simulate the performance and dynamic behavior of a squirrel cage induction machine. Also, a simple and systematic design technique is presented to explore and select the optimum design parameters of a SynRM that can achieve optimal pullout torque and minimum ripples, and to study their effect on the motor performance. In addition, the evaluation of a proposed model of self-excited induction generator (SEIG) including the effect of inductance saturation and its rate of change is investigated. The model is validated experimentally using a test rig of 7.5 kW SEIG.

ACKNOWLEDGMENT

First of all, I would like to thank Allah, the most gracious, the most merciful, for giving me the patience and guidance to complete this work.

I would like to express my deep thanks and gratitude to my supervisors, **Prof. Dr. Khairy Farahat Ali**, and **Dr. Ahmed Ali Soliman Huzayyin** for their encouragement, support, helpful advice and the time they offered me during research period. Their knowledge, patience and kindness are greatly appreciated. I couldn't accomplish my present achievements without their support and motivation. I feel tremendously lucky to have had the opportunity to work with them.

I would also to express my sincere thanks and heartiest gratitude to **Dr. Shady Gadoue** from Newcastle University for his great faithful guidance and encouragement during the period I had spent in UK during my exchange program. In addition, I would like express my gratitude to my colleagues in Newcastle University, especially **AbdIrahman Alfarhan** and **Sana Ullah**, for their support and cooperation at some important stages of my work. Also, many thanks to the WELCOME project of Erasmus Mundus programme that gave me the chance of a joint scholarship at Newcastle University, which strongly affected and enhanced my life and work.

Great thanks to my colleagues at Cairo University for their support and encouragement. I would like also to express my deep thanks and appreciation to all my friends and relatives for their encouragement.

Finally, I would like to express my sincere and appreciated thanks for my mother and my wife for their sincere support and prayers. Besides, I would like to dedicate this thesis to the memory of my father, who had always encouraged me and wished to witness the completion of this work.

TABLE OF CONTENTS

LIST OF FI	GURES	viii
LIST OF TA	ABLES	xi
LIST OF SY	MBOLS	xii
LIST OF A	BBREVIATIONS	xv
ABSTRACT	Γ	xvi
CHAPTER	ONE: INTRODUCTION	1
1.1. Ge	neral Introduction	1
1.2. Sec	ope of the Thesis	1
1.3. Th	esis Overview	2
1.4. Pu	blications	3
CHAPTER	TWO: LITERATURE REVIEW	4
2.1. Int	roduction	4
2.2. Ele	ectrical Machines Modeling	4
2.2.1.	Analytical Modeling	5
2.2.2.	Lumped Circuit Model	7
2.2.3.	Finite Element Method (FEM) Modeling	8
2.2.4.	Multi-physics and Coupled Models	10
2.3. No	nlinearity in Electrical Machines Modeling	11
2.3.1.	Magnetic Saturation	11
2.3.2.	Iron Losses	12
CHAPTER	THREE: MODELING METHODOLOGY	15
3.1. Int	roduction	15
3.2. Pro	pposed Coupled FEM-Circuit Models	15
3.3. Ca	se Study I: Modeling of SynRM	16
3.3.1.	Evolution of SynRM	16
3.3.2.	Overall Combined FEM-Circuit Modeling Approach	20
3.3.3.	Finite Element Computation and Modeling	22
3.3.4.	Circuit Model of SynRM	30

3.3	5.5.	Combined FEM-Circuit Model of SynRM	33
3.4.	Cas	se Study II: Modeling of Squirrel Cage IM	38
3.4	.1.	Overview of Induction Machine Modeling	38
3.4	.2.	Proposed Coupled FEM-Circuit Model of IM	38
СНАРТ	ΓER I	FOUR: ASSESSMENT OF DESIGN PARAMETERS AND	
NONLI	NEA	RITY EFFECT ON SYNRM	51
4.1.	Intr	oduction	51
4.2.	Des	sign Procedure	51
4.3.	Effe	ect of Design Parameters	52
4.3	.1.	Effect of Barrier Width	53
4.3	5.2.	Effect of Notch Width	56
4.4.	Dyı	namic Performance of SynRM with and without Nonlinear Effect	60
СНАРТ	ΓER I	FIVE: EXPERIMENTAL EVALUATION OF MAGNETIZING	
INDUC	CTAN	ICE SATURATION IN SELF-EXCITED INDUCTION GENERAT	ORS
			67
5.1.	Intr	oduction	67
5.2.	Sel	f-Excited Induction Generator (SEIG)	67
5.3.	Pro	posed SEIG Model with Saturated Magnetizing Inductance	69
5.4.	Sim	nulation Results and Experimental Validation	73
5.4	.1.	No Load Operation	75
5.4	.2.	Balanced Load Operation	77
5.4	.3.	Unbalanced Load Operation	80
5.4	.4.	Operation at Fault Condition	83
СНАРТ	ΓER S	SIX: CONCLUSION AND FUTURE WORK	86
6.1.	Cor	ntributions and Conclusion	86
6.2.	Fut	ure Work	87
REFER	ENC	ES	88

LIST OF FIGURES

Figure 2.1:Speed vs. accuracy of various field computation approaches [2]	5
Figure 2.2: Model approaches for iron losses computation in electric machines [49] \dots	12
Figure 3.1: Conventional solid reluctance rotors: a) 2-pole; b) 4-pole	17
Figure 3.2: Rotor poles of discrete poles SynRM (4-pole segmental rotor)	17
Figure 3.3: Flux barrier rotor design	18
Figure 3.4: Axially-laminated anisotropic rotor design (ALA)	20
Figure 3.5: Computation procedure to estimate cross-saturated inductances	21
Figure 3.6: 2D cross section of the considered SynRM under study with solution mesh	1.22
Figure 3.7: B-H curve of the used Silicon Steel for core material	23
Figure 3.8: Flux density and flux lines: (a) <i>d</i> -position; (b) <i>q</i> -position	24
Figure 3.9: Torque (N.m) versus torque angle (deg)	24
Figure 3.10: Developed torque versus time at different stator currents	25
Figure 3.11: Average torque and torque ripples at different currents	25
Figure 3.12: Iron losses distribution in W/m3; (a) Hysteresis losses, (b) Eddy-current	
losses	27
Figure 3.13: Total iron losses separated into hysteresis and eddy-current	28
Figure 3.14: Total iron losses divided between stator and rotor	28
Figure 3.15: Airgap flux density	29
Figure 3.16: Airgap flux lines function	29
Figure 3.17: dq-axes fixed to the rotor of SynRM	32
Figure 3.18: Static FEM analysis of L _{aa} , L _{ab} and L _{ac} at rated current	33
Figure 3.19: Saturated mutual and leakage inductances versus current	34
Figure 3.20: Cross-saturation in dq -fluxes: (a) λ_d versus i_d ; (b) λ_q versus i_q	35
Figure 3.21: Cross-saturation in dq-inductances: (a) L_d versus i_d ; (b) L_q versus i_q	36
Figure 3.22: Torque and speed response at sudden load change from 0 to 7 N.m: (a)	
Torque (b) Speed	37
Figure 3.23: 2D cross section of the IM under study with solution mesh and phase	
distribution	39
Figure 3.24: Electric circuit network representation of end ring with rotor bars	40
Figure 3.25: IM starting torque and speed response at no load; (a) Torque, (b) Speed	41
Figure 3.26: IM three phase stator currents at starting at no-load	42
Figure 3.27: Field lines and flux density at no load	42

Figure 3.28: Developed torque and speed at 4 N.m; (a) Torque, (b) Speed
Figure 3.29: IM three phase stator currents at starting at load of 4 N.m44
Figure 3.30: Field lines and flux density at T=4 N.m4
Figure 3.31: Rotor electric network with bar-3 is the broken bar
Figure 3.32: Torque and speed responses of healthy, one broken-bar and two broken-
bars; (a) Torque, (b) Speed
Figure 3.33: Field lines and flux density at one broken bar case at 4 N.m47
Figure 3.34: Field lines and flux density at two broken bars case at 4 N.m4
Figure 3.35: Torque and speed response at 4 broken bars
Figure 3.36: Torque and speed response at 5 broken bars
Figure 3.37: Flux lines and flux density at the case of 4 broken bars
Figure 3.38: Flux lines and flux density at the case of 5 broken bars
Figure 4.1: 2D cross-section of the stator with phase-distribution
Figure 4.2: Rotor design parameters
Figure 4.3: The tested four models of different barrier width
Figure 4.4: Torque (N.m) versus torque angle (deg) of the four models with different
barrier width5
Figure 4.5: %Torque ripples for different models
Figure 4.6: : q -axis inductance (L_q) versus current (I_q) for models with different
barrier width50
Figure 4.7: The tested four models of different notch width
Figure 4.8: Torque (N.m) versus torque angle (deg) of the four models with different
notch width53
Figure 4.9: %Torque ripples of the four tested models with different notch width5
Figure 4.10: L_d and L_q of different models; (a) L_d ; (b) L_q
Figure 4.11: Cross-saturation in dq-fluxes of motor-C2: (a) λ_d versus i_d ; (b) λ_q versus
i_q 60
Figure 4.12: Cross-saturation in dq -inductances of motor-C2: (a) L_d versus i_d ; (b) L_q
versus i_q 6
Figure 4.13: Torque and speed response at sudden load change from 0 to 7 N.m, for
both models: cross-saturated inductance (with C.S) and fixed-inductance (WO Sat)62
Figure 4.14: Torque capability and speed response of both models when torque is
increased in steps: (a) Torque, (b) Speed64

Figure 4.15: Phase-A voltage (V_a) with 80% sag for 0.5 sec	64
Figure 4.16: Torque and speed responses of both models (with and without saturation	1)
during 80% voltage sag for 0.5 sec: (a) Torque, (b) Speed	65
Figure 5.1: Schematic diagram of SEIG feeding a three-phase load	69
Figure 5.2: Circuit diagram of the experimental setup	74
Figure 5.3: Calculated and experimental magnetization curve, with three test points	
marked in red	75
Figure 5.4: No load voltage buildup; (a) Simulation, (b) Experimental	76
Figure 5.5: Simulated and measured waveforms at no load; (a) Voltage, (b) Current	77
Figure 5.6: Switching of a balanced load of $R=620\Omega/phase$ at 10.3 second; (a)	
Voltage, (b) Current.	78
Figure 5.7: Steady-state output current waveform at balanced resistive load of	
620Ω /phase, C = 30μ F/phase	79
Figure 5.8: Steady-state generated voltage and current waveforms at balanced <i>R-L</i>	
load, (R =365 Ω /phase, L =1H/phase), C = 37 μ F/phase; (a) Voltage, (b) Current	80
Figure 5.9: Generated voltage and current waveforms at unbalanced resistive load	
$(R_{La} = R_{Lb} = 620\Omega$ and $R_{Lc} = 500\Omega$), $C = 30\mu$ F/phase; (a) Voltage, (b) Current	81
Figure 5.10: Generated voltage and current waveforms at $R_{La} = \infty$ and $R_{Lb} = R_{Lc} =$	
500Ω , $C = 30\mu$ F/phase; (a) Voltage, (b) Current	82
Figure 5.11: Steady-state waveforms of voltage and current at unbalanced R-L load,	C
= 37μF/phase; (a) Voltage, (b) Current	83
Figure 5.12: Behavior of the SEIG at three-phase fault at the generator terminals; (a)	
Voltage, (b) Current	84
Figure 5.13: Fault behavior of the SEIG at line-to-line fault at the generator terminals	s;
(a) Voltage, (b) Current	85

LIST OF TABLES

Table 2.1: Maxwell's equations	8
Table 2.2: Comparison of different modeling methods	11
Table 3.1: Basic specifications of the design values of the machine	23
Table 3.2: Jordan equations constants of the Ma-19 29 Ga Silicon Steel	26
Table 3.3: Iron losses computations of the SynRM	27
Table 3.4: Comparison of calculated iron loss at different solvers	30
Table 3.5: Basic specifications of the design values of the IM	39
Table 3.6: Steady-state speed at different cases of broken bars	49
Table 4.1: Models with different barrier width	54
Table 4.2: Models with different notch width	56
Table 5.1: Induction Machine Parameters	74

LIST OF SYMBOLS

 a_s : Cross-section area of the stator conductor

B : Magnetic flux density

 B_p : Peak value of the flux density

 B_m : Mechanical friction coefficient

C : Capacitance of excitation capacitor bank pre phase

D : Electric displacement

E : Electric field

F : Per-unit frequency

f : Frequency

 f_{base} : Base frequency

H : Magnetic field intensity

 i_{as} , i_{bs} , i_{cs} : Stator phase currents of the IM

 i_{ar} , i_{br} , i_{cr} : Rotor phase currents of the IM

 i_a , i_b , i_c : Phase currents in abc-frame

 i_{La} , i_{Lb} , i_{Lc} : Load abc phase currents

 i_m : Magnetizing current

 i_d : Direct-axis current

i_a : Quadrature-axis current

J: Current density

 J_m : Mechanical Inertia coefficient

 K_1 , K_2 , K_3 : Constants of magnetizing inductance exponential equation

 K_{ec} : Eddy current losses coefficient

 K_{ex} : Excess losses coefficient

 K_{hvs} : Hysteresis losses coefficient

 K_{SE} , α , β : Steinmetz constants

 L_{aa} , L_{bb} , L_{cc} : Self-inductances of *abc*-phases

 L_{ab} , L_{bc} , L_{ac} : Mutual inductances between abc-phases

 L_{La} , L_{Lb} , L_{Lc} : Load inductances per phase in *abc*-frame

 L_l : Leakage inductance

 L_{ls} : Stator leakage inductance

 L_{lr} : Rotor leakage inductance

 L_m : Phase useful mutual inductance

 L_0 : Mutual inductance between phases due to saliency

 L_{md} : Direct-axis mutual inductance

 L_d : Direct-axis inductance

 L_{mq} : Quadrature-axis mutual inductance

 L_q : Quadrature-axis inductance

 L_s : Stator self-inductance L_r : Rotor self-inductance

 l_s : Mean length of the stator turn

N : Number of turns per phase

P: Number of pole pairs P_{ec} : Eddy current losses

 P_{ex} : Excess losses P_{fe} : Iron losses

 P_{hvs} : Hysteresis losses

 R_{La} , R_{Lb} , R_{Lc} : Load resistances per phase in *abc*-frame

 R_{ro} : Outer radius of rotor R_{ri} : Inner radius of rotor R_s : Stator resistance

 r_s, r_r : Stator and rotor per-phase resistances of IM

 T_e : Electromagnetic developed torque

 T_L : Mechanical load torque

 v_{as} , v_{bs} , v_{cs} : Stator phase voltages of the IM v_{ar} , v_{br} , v_{cr} : Rotor phase voltages of the IM

 V_a , V_b , V_c : Phase voltages in abc-frame

 V_d , V_q : d- and q-axis voltages

 V_g : Air-gap voltage across the magnetizing inductance

 W_b : Barriers width

 W_n : Notch width (q-axis cutout)

 X_m : Magnetizing reactance

 X'_m : Magnetizing reactance variation with magnetizing current

 ε_0 : Electric permittivity of free space

 ε : Electric permittivity

 λ_{as} , λ_{bs} , λ_{cs} : Stator phase fluxes of IM in *abc*-frame

 λ_{ar} , λ_{br} , λ_{cr} : Rotor phase fluxes of IM in *abc*-frame

 $\lambda_a, \lambda_b, \lambda_c$: Phase fluxes in *abc*-frame

 λ_d, λ_q : dq-frame fluxes δ : Torque angle

 μ : Magnetic permeability ρ : Electric charge density

 θ_r : Angle between *d*-axis of the rotor and the axis of phase-*a*

 σ : Electrical conductivity of the used copper

 ω_r : Rotor speed in electrical degrees

LIST OF ABBREVIATIONS

2D : Two Dimensional

3D : Three Dimensional

ALA : Axially laminated anisotropic

DTC : Direct Torque Control

EV : Electric Vehicle

FEM : Finite Element Method

GSE : Generalized Steinmetz Equation

IM : Induction Machine

MEC : Magnetic Equivalent Circuit

PM : Permanent Magnet
SE : Steinmetz Equation

SEIG : Self-Excited Induction Generator

SynRM : Synchronous Reluctance Motor