Radiation effects on the structure, physical and mechanical properties of rubber/inorganic nanocomposites

THESIS SUBMITTED

BY

Mona kamal atia

(M.Sc. (Organic Chemistry) Ain shams University, 2010)

FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
PhD

IN

CHEMISTRY

TO

FACULTY OF SCIENCE AIN SHAMS UNIVERSITY CAIRO - EGYPT

2016

THESIS ADVISORS:

Prof. Dr. Abdel-Gawad Mohammad Rabie

Prof. of Organic Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.

Prof. Dr. Mohammad Mansour Abdel-Aziz

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.

Approval Sheet

Radiation effects on the structure, physical and mechanical properties of rubber/inorganic nanocomposites

By

Mona kamal atia

For

The degree of doctor of philosophy (PhD)

THESIS ADVISORS:

Signature

Prof. Dr. Abdel-Gawad Mohammad Rabie

Prof. of Organic Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.

.

Prof. Dr. Mohammad Mansour Abdel-Aziz

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.

Prof. Dr. Hamad Ahmed Younes Derbala

Chairman of Chemistry Department Faculty of Science, Ain Shams University

QUALIFICATION

Name: Mona kamal atia

Scientific Degree: PhD

Department: Chemistry

College: Faculty of Science

University: Ain Shams

B.Sc. Graduation Year: 2001 (very good – Ain shams

university)

M.Sc. Graduation Year: 2010 (Ain shams university)

Acknowledgment

First of all, Thanks to "ALLAH" to whom I always pray, under the line of his holy face. I am deeply thankful to almighty God for showing me the right path and helping me to complete this work.

Deep thanks and gratitude to Prof. Dr. A. M. Rabie, professor of polymer chemistry, Faculty of Science, Ain Shams University for his interest and following up the progress in work, and supervising and continuous support all over this work.

The author wishes to express his deepest thanks and gratitude to Prof. Dr. M. M. Abdel-Aziz, Professor of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), for suggesting and supervising the subject of study and for their interest and following up the progress in work, guidance, valuable proposals, suggesting the subject of application, constructive criticism, encouragement, continuous support, revising the work and presenting the thesis till it reached its present form.

My deep thanks are also extended to Head and all staff members of Radiation chemistry Department, NCRRT, for their help, technical assistance and encouragement.

My appreciation and gratitude go to my father, may God bless his soul, and my mother, brother and all members of my dear family, for their loving support, continuous backing, prayers all through my life, and understanding during the tiring period in which this work was accomplished.

CONTENTS

No		Page
I	Contents	Ι
	List of figures	${f V}$
	List of tables	XI
	Abstract	XIII
	Aim of work	XIV
	Chapter 1	1
	Introduction and Literature Review	
1.1	Radiation processing of polymers	1
1.2	Interactions of Ionizing Radiation with	2
	polymer	
1.3	Enhancement of Radiation Crosslinking	3
1.3.1	Concept of Enhancement of Radiation	3
	Crosslinking	
1.3.2	The strategies for improvement of	5
	radiation crosslinking can be summarized	
	as follows	
1.3.2.I	Increasing the number of polymer radicals	5
	in the amorphous region by	
1.3.2.II	Increasing the probability of	6
	recombination of polymer radicals by	
1.3.2. III.	Addition of filler	9
1.3.3	Confirmation of Radiation Crosslinkage	11
1.4	Nanocomposite	12
1.5	Montmorillonite Clay	14
1.6	Rubber /clay nanocomposites	19
1.7	EPDM /clay nanocomposites	25
1.8	Fumed Silica	31
1.9	Zirconium silicate	37
1.10	Cerium Oxide	39
II	MATERIALS AND EXPERIMENTAL	
	TECHNIQUES	
2.1	Materials	44
2.2	Experimental techniques	51
2.2.1	Preparation of formulated samples	51

2.2.2	Preparation of samples for irradiation	55
2.2.3	Irradiation procedure	55
2.2.4	Surface Modification of CeO2	55
2.2.5	The Preparation of tertiary amine	56
	modified clay	
2.2.6	Measurements	56
2.2.6.1	Mechanical measurements	56
2.2.6.2	Physico-chemical measurements	58
2.2.6.3	Thermal analysis	59
2.2.6.4	Electrical measurements	60
2.2.6.5	Scanning Electron Microscope (SEM)	60
	measurements	
2.2.6.6	Transmission Electron Microscope	60
	measurements	
III	Results & Discussion	
3.1	Effect of fumed silica and zirconium	61
	silicate on physical and mechanical	
	properties of EPDM rubber	
	nanocomposite.	
3.1.1	Measurement of nanoparticles size using	62
	Transmission Electron Microscopy (TEM)	
3.1.2	Mechanical properties	63
3.1.2.1	Mechanical properties of nanocomposites	63
	containing different contents of fumed	
	silica and zirconium silicate	
3.1.2.2	Mechanical properties of nanocomposites	66
	containing N, N-m phenylenedimaleimide	
	coagent.	
3.1.3	Soluble fraction and Swelling number	74
3.1.4	Electrical properties	79
3.1.5	Scanning electron microscope (SEM)	81
3.1.6	Thermal properties measurement	84
3.1.6.1	Effect of Silica Loadings on Thermal	84
	Stability of EPDM nanocomposites	

3.1.6.2	Effect of Silica on the Activation Energy of	92
	Thermal Decomposition of the EPDM	
2.2	nanocomposites	06
3.2	Effect of fumed silica and modified montmorillonite (OMMT) nanoclay on	96
	physical and mechanical properties of	
	EPDM rubber nanocomposites	
3.2.1	Transmission Electron Microscopy (TEM)	96
3.2.2	Mechanical properties	97
3.2.2.1	Mechanical properties of composites	97
	containing different contents of modified	
	(OMMT) and unmodified (MMT)	
	montmorillonite clay.	
3.2.2.2	Mechanical properties of nanocomposites	100
	containing 10 phr modified clay and	
	different contents of fumed silica.	
3.2.2. 3.	Mechanical properties of the	103
	nanocomposites containing N, N-m-	
	phenylenedimaleimide coagent.	
3.2.3	Soluble fraction and Swelling number	106
3.2.4	Electrical properties	111
3.2.5	Scanning electron microscope (SEM)	113
3.2.6	Thermal properties measurement	115
3.2.6.1	Effect of modified clay and fumed silica on	115
	the Thermal Stability of EPDM	
	nanocomposites.	
3.2.6.2	The activation energy of thermal	121
	decomposition of the EPDM	
	nanocomposites containing 10 phr	
	modified clay and different contents of	
	fumed silica.	
3.3	Effect of coagent and modified cerium	124
	oxide on physical and mechanical	
	properties of γ-irradiated EPDM rubber/	
	montmorillonite clay nanocomposite.	
3.3.1	Transmission Electron Microscopy (TEM)	125

3.3.2	Mechanical properties	125
3.3.2.1	Mechanical properties of nanocomposites	125
	containing different contents of modified	
	and unmodified cerium oxide.	
3.3.2.2	Mechanical properties of nanocomposites	129
	containing 10 phr modified clay and	
	different contents of cerium oxide.	
3.3.2.3	Mechanical properties of nanocomposites	132
	containing N, N-m-phenylenedimaleimide	
	coagent.	
3.3.3	Soluble fraction and Swelling number	135
3.3.4	Electrical properties	140
3.3.5	Scanning electron microscope (SEM)	141
3.3.6	Thermal properties measurement	144
3.3.6.1	Effect of 10 phr modified clay and	144
	different contents of modified cerium	
	oxide on the thermal stability of the EPDM	
	nanocomposites	
3.3.6.2	Effect of 10 phr modified clay and	151
	different contents of modified cerium	
	oxide on the activation energy of the	
	thermal decomposition of the EPDM	
	nanocomposites.	
	SUMMARY	155
	Conclusion	164
	REFERENCES	165

LIST OF FIGURES

No		Page
Figure 1	the mechanism of radiation crosslinking enhancement by PFM	7
Figure 2	Scheme of dispersion of fillers in nanocomposites	14
	(a) Conventional microcomposite, (b) intercalated	
	nanocomposite and (c) exfoliated nanocomposite.	
Figure 3	Structure of clay minerals represented by	15
	montmorillonite.	
Figure 4	TEM image of (a) fumed silica and (b) zirconium	63
	silicate.	
Figure 5	Relation between irradiation dose and tensile	65
	strength of EPDM rubber loaded with fumed	
	silica and zirconium silicate with different	
-	contents.	
Figure 6	Relation between irradiation dose and elongation	66
	of EPDM rubber loaded with fumed silica and	
E: 7	zirconium silicate with different contents.	6 0
Figure 7	Relation between irradiation dose and tensile	68
	strength of EPDM rubber loaded with fumed	
Figure 8	silica and zirconium silicate containing coagent. Relation between irradiation dose and elongation	69
riguie o	of EPDM rubber loaded with fumed silica and	09
	zirconium silicate containing coagent.	
Scheme 1	Self-crosslinking of EPDM and network	70-72
Scheme 1	formation.	
Scheme 2	Crosslinking by N, N-m-phenylenedimaleimide	73
	coagent	
Figure 9	relation between irradiation dose and solubility of	75
C	EPDM rubber loaded with fumed silica and	
	zirconium silicate with different content	
Figure 10	Relation between irradiation dose and swelling	76
-	number of EPDM rubber loaded with fumed	
	silica and zirconium silicate with different	
	content.	

Figure 11	Relation between irradiation dose and solubility of EPDM rubber loaded with fumed silica and	77
	zirconium silicate with coagent.	
Figure 12	Relation between irradiation dose and swelling number of EPDM rubber loaded with fumed	78
Figure 13	silica and zirconium silicate with coagent. SEM of loaded EPDM rubber irradiated to 100 kGy (a) 40 phr fumed silica, (b) 30 phr fumed silica + 10 phr zirconium silicate, (c) 20 phr fumed silica + 20 phr zirconium silicate (d) 10 phr fumed silica + 30 phr zirconium silicate, (e) 40 phr zirconium silicate.	82
Figure 14	SEM of Loaded EPDM rubber irradiated to 100 kGy (a) 40 phr fumed silica (b) 40 phr fumed silica +5 phr coagent (c) 30 phr fumed silica + 10 phr zirconium silicate (d) 30 phr fumed silica + 10 phr zirconium silicate + 5 phr cogent	83
Figure 15	TGA of EPDM rubber loaded with fumed silica and zirconium silicate with different content and irradiated to 100 kGy.	87
Figure 16	Rate of decomposition of EPDM rubber loaded with fumed silica and zirconium silicate with different content and irradiated to 100 kGy.	88
Figure 17	thermogravometric analysis of EPDM rubber loaded with fumed silica and zirconium silicate irradiated to 100 kGy with &without coagent.	89
Figure 18	Rate of decomposition of EPDM rubber loaded with fumed silica and zirconium silicate irradiated to 100 kGy with &without coagent.	90
Figure 19	Plot of lnln (1/y) versus 1/ T for conversion for EPDM rubber loaded with fumed silica and zirconium silicate with different content and irradiated to 100 kGy.	93
Figure 20	Plot of lnln (1/y) versus 1/ T for conversion for EPDM rubber loaded with fumed silica and	94

	zirconium silicate with coagent irradiated to 100 kGy.	
Figure 21	TEM image of (a) fumed silica and (b) modified clay.	97
Figure 22	Relation between tensile strength and clay content of EPDM rubber irradiated to 50 kGy containing modified and unmodified clay.	99
Figure 23	Relation between elongation % and clay content of EPDM rubber irradiated to 50 kGy containing modified and unmodified clay.	100
Figure 24	Relation between irradiation dose and tensile strength of EPDM rubber loaded with 10 phr modified clay and different contents of fumed silica.	102
Figure 25	Relation between irradiation dose and elongation of EPDM rubber loaded with 10 phr modified clay and different contents of fumed silica.	102
Figure 26	Relation between irradiation dose and tensile strength of EPDM rubber nanocomposites containing modified clay fumed silica and coagent.	105
Figure 27	Relation between irradiation dose and elongation of EPDM rubber nanocomposites containing modified clay, fumed silica and coagent.	105
Figure 28	Relation between irradiation dose and swelling number of EPDM rubber loaded with 10 phr modified clay and different contents of fumed silica.	108
Figure 29	Relation between irradiation dose and solubility of EPDM rubber loaded with 10 phr modified clay and different contents of fumed silica.	109
Figure 30	Relation between irradiation dose and swelling number of EPDM rubber loaded modified clay and fumed silica containing coagent.	110
Figure 31	Relation between irradiation dose and solubility of EPDM rubber loaded with modified clay and	111

	fumed silica containing coagent.	
Figure 32	SEM of loaded EPDM rubber irradiated to 50	113
· ·	kGy (a)10 phr modified clay (b) 10 phr fumed	
	silica +10 phr modified clay (c) 20 phr fumed	
	silica+ 10 phr modified clay (d) 30 phr fumed	
	silica+ 10 phr modified clay	
Figure 33	SEM of Loaded EPDM rubber irradiated to 50	114
	kGy (a)10 phr modified clay (b) 10 phr modified	
	clay + 5 phr coagent (c) 30 phr silica + 10 phr	
	modified clay (d) 30 phr silica + 10 phr modified	
E' 0.4	clay + 5 phr coagent	117
Figure 34	Thermogravimetric analysis (TGA) of EPDM	117
	rubber loaded with modified clay and different	
	contents of fumed silica irradiated to 50 kGy	
Figure 35	Rate of decomposition of EPDM rubber loaded	118
	with modified clay and different contents of	
F' 06	fumed silica irradiated to 50 kGy.	110
Figure 36	thermogravimetric analysis of of EPDM rubber	118
	loaded with modified clay and fumed silica with	
	coagent irradiated to 50 kGy	
Figure 37	Rate of decomposition of EPDM rubber loaded	119
	with modified clay and fumed silica with coagent	
	irradiated to 50 kGy	
Figure 38	Plot of lnln (1/y) versus 1/T for conversion of	122
	EPDM rubber loaded with 10 phr nanoclay and	
	different contents of fumed silica irradiated to 50	
	kGy.	
Figure 39	Plot of lnln (1/y) versus 1/T for conversion for	122
υ	EPDM rubber loaded with 10 phr nanoclay and	
	30 phr fumed silica irradiated to 50 kGy	
	containing coagent	
Figure 40		125
1 iguic 40	modified cerium oxide	123
Eiguro 41	Relation between cerium oxide content and	126
rigule 41		120
	tensile strength of EPDM rubber loaded with 10	
	phr modified clay and different contents of	
TO 16	cerium oxide irradiated to 50 kGy.	
Figure 42	Relation between cerium oxide content and	127

	elongation of EPDM rubber loaded with 10 phr	
	modified clay and different contents of cerium	
	oxide irradiated to 50 kGy.	
Scheme 3	The possible interaction of APTES with cerium oxide and EPDM.	129
Figure 43	Relation between irradiation dose and tensile strength of EPDM rubber loaded with 10 phr modified clay and different content of modified cerium oxide.	131
Figure 44	Relation between irradiation dose and elongation of EPDM rubber loaded with 10 phr modified clay and different contents of modified cerium oxide.	132
Figure 45	Relation between irradiation dose and tensile strength of EPDM rubber loaded with 10 phr modified clay and modified cerium oxide containing coagent.	134
Figure 46	Relation between irradiation dose and elongation of EPDM rubber loaded with 10 phr modified clay and modified cerium oxide containing coagent.	135
Figure 47	Relation between irradiation dose and solubility of EPDM rubber loaded with 10 phr modified clay and different contents of modified cerium oxide.	137
Figure 48	Relation between irradiation dose and swelling number of EPDM rubber loaded with 10 phr modified clay and different contents of modified cerium oxide.	138
Figure 49	Relation between irradiation dose and solubility of EPDM rubber loaded with 10 phr modified clay and 5 phr modified cerium oxide containing coagent.	139
Figure 50	Relation between irradiation dose and swelling number of EPDM rubber loaded with 10 phr modified clay and 5 phr modified cerium oxide containing coagent.	140

Figure 51	SEM of Loaded EPDM rubber irradiated to 50	142
	kGy (a)10 phr modified clay (b) 2 phr modified	
	cerium oxide +10 phr modified clay (c) 5 phr	
	modified cerium oxide + 10 phr modified clay (d)	
	10 phr modified cerium oxide + 10 phr modified	
F: 70	clay	1.40
Figure 52	SEM of Loaded EPDM rubber irradiated to 50	143
	kGy (a)10 phr modified clay (b) 10 phr modified	
	clay+ 5 phr coagent (c) 5 phr modified cerium	
	oxide + 10 phr modified clay (d) 5 phr modified	
	cerium oxide + 10 phr modified clay + 5 phr	
	coagent	
Figure 53	Thermogravimetric analysis (TGA) of EPDM	148
	rubber loaded with 10 phr modified clay and	
	different contents of modified cerium oxide	
	irradiated to 50 kGy	
Figure 54	Rate of decomposition of EPDM rubber loaded	148
	with 10 phr modified clay and different contents	
	of modified cerium oxide irradiated to 50 kGy.	4.40
Figure 55	thermogravimetric analysis of EPDM rubber	149
	loaded with10 phr modified clay and 5 phr	
	modified cerium oxide containing coagent	
	irradiated to 50 kGy	4 = 0
Figure 56	-	150
	with 10 phr modified clay and 5 phr modified	
	cerium oxide containing coagent irradiated to 50	
	kGy	
Figure 57	` • * ·	152
	loaded with 10 phr modified clay and modified	
	cerium oxide with different contents irradiated to	
T ' 7 0	50 kGy.	4 = 0
Figure 58	Plot of lnln (1/y) versus 1/T for EPDM rubber	153
	with 10 phr modified clay and 5 phr modified	
	cerium oxide irradiated to 50 kGy containing	
	coagent.	

LIST OF TABLES

No		Page
Table 1	Characteristics of Enhancement Method of Radiation Crosslinking.	12
Table 2	EPDM formulations containing different concentrations of fumed silica and zirconium silicate.	52
Table 3	EPDM Formulations containing different concentrations of fumed silica and modified clay.	53
Table 4	EPDM formulations containing different concentrations of modified clay and cerium oxide.	54
Table 5	The volume resistivity (Ω cm) of EPDM rubber loaded with different contents of fumed silica and zirconium silicate.	80
Table 6	Temperatures for different wt losses of EPDM rubber nanocomposites loaded with fumed silica and zirconium silicate with different contents and irradiated to 100 kGy.	91
Table 7	Calculation of the activation energy for silica- EPDM nanocomposites	95
Table 8	The volume resistivity of EPDM rubber loaded with 10 phr modified clay and different contents of fumed silica before and after irradiation to 50 kGy.	112
Table 9	Temperatures for different weight losses of EPDM rubber nanocomposites loaded with10 phr modified clay and different contents of fumed silica irradiated to 50 kGy.	120
Table 10	Calculation of the activation energy for EPDM rubber nanocomposites loaded with10phr modified clay and different contents of fumed silica irradiated to 50 kGy.	123