Molecular Targets For Therapy In Acute Leukemia

Essay

Submitted for partial fulfillment of Master Degree In Clinical Pathology

By

Jacquline Sobhi Louise

M.B.B.Ch. – Ain Shams University

Under Supervision Of

Prof. Dr./ Ibrahim Youssef Abd El Massih

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. Dr./ Manal Ahmed Shams El Din

Professor of Clinical Pathology
Faculty of Medicine - Ain Shams University

Dr./ Soha Raouf Youssef

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

Contents

Page
List of AbbreviationsI
List of TablesV
List of FiguresVI
Introduction
Chapter 1: Acute Leukemia4
Definition4
Incidence and Epidemiology4
Etiology 5
Clinical Manifestations
Classifications of Acute Leukemia
Laboratory findings21
Chapter 2: Molecular Markers in Acute Leukemia
Leukemogenesis
Chromosomal Abnormalities
Genetic Alteration
Oncogene
Tumor Suppressor Gene
Epigenetic Alteration70
Chapter 3: Novel Diagnostic Technology in Acute Leukemia 73
Conventional Cytogenetics
Molecular Cytogenetics77
Immunophenotyping by Flow Cytometry
Molecular Techniques
Evolving Techniques
Most common chromosomal aberrations used in diagnosis 108
Chapter 4: Recent update in therapy in Acute Leukemia 110
Treatment of Acute Leukemia
Prognostic Factors in Acute Leukemia
Summary and Conclusion
Recommendation
References
Arabic Summary
ATADIC SUIIIIIATV

Acknowledgement

First of all, thanks to **GOD**, the most merciful for guiding me through and giving me the strength to complete this study.

It is a pleasure to express my deepest thanks and profound gratitude to my honored professor, **Prof. Dr./ Ibrahim Youssef Abd El-Massih**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his continuous encouragement, moral support and for giving me the honor of working under his supervision.

Special thanks and my sincere indebtedness are to **Prof. Dr./ Manal Ahmed Shams El Din,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her active support, valuable comments and faithful guidance throughout the work.

No words can express my thanks to **Dr./ Soha Raouf Youssef**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her precious help and faithful guidance as well as her continuous review of this manuscript till the smallest detail.

DEDICATION

To

My Mother,
My Father,
My Husband,
My Children
And

My Friends Neven & Iman

List of Abbreviations

(-)	: Loss of chromosome
(+)	: Gain of chromosome
ABL	: Ableson Tyrosine Kinase Gene
AL	: Acute Leukemia
ALL	: Acute Lymphoblastic Leukemia
AML	: Acute Myeloid Leukemia
AP	: Acid phosphatase
APaF-1	: Apoptotic protease activating factor 1
APL	: Acute promyelocytic leukemia
aPTT	: Activated partial thromboplastin time
ATM gene	: Ataxia Teleangiectasia Mutated gene
ATP	: Adenosine Triphosphate
ATRA	: All Trans Retinoic Acid
BA	: Break-Apart Probe
BCL	: B-cell lymphoma/leukemia
BCR	: Breakpoint Cluster Region
BCRP	: Breast Cancer Resistance Protein
BCSH	: British Committee for Standards in Haematology
BFM group	: Berlin–Frankfurt–Münster group
CAN	: Candida gene
CBF	: Core Binding Factor
CBFa	: Core Binding Factor Alpha Subunit
СВГВ	: Core Binding Factor Beta Subunit
CC	: Conventional Cytogenetics
CD	: Cluster Of Differentiation
CDKs	: Cyclin-Dependent Kinases
cDNA	:Complementary deoxyribonucleic acid
CEBP (CBP)	: CCAAT-Enhancer-Binding-Protein
CEPs	: Centromere-Enumerating Probes
CESH	: Comparative Expressed Sequence Hybridization
CGH	: Comparative Genomic Hybridization
CKIs	: Cyclin-Dependent Kinases Inhibitors
CMV	: Cytomegalo Virus
CNS	: Central Nervous System
CR	: Complete Remission
CRBP	: Cellular Retinol-Binding Protein-I Gene
CSF	: Cerebro Spinal Fluid

List of Abbreviations (Cont.)

CSF-I	: Colon Stimulating Factor –I
DAC	: Deoxy Azacytidine
DAPK	: Death-associated protein kinase
DDX10	: DEAD box proteins
DEK gene	: Dog Embryo Kidney gene
Del	: Deletion
DFS	: Disease Free Survival
Diablo	: Direct IAP binding with low PI
DIC	: Disseminated Intravascular Coagulopathy
DNA	: Deoxyribonucleic Acid
E2F	: Transcription factor family inducing E ₂ F
EBV	: Epstein Barr Virus
ECOG	: Eastern Co-operative Oncology Group
EGIL	: European Group for the Immunological
ERK	: Extracellular Signal Regulated Kinase
ETO	: Eight Twenty-One gene
EVI1	: Ecotropic Viral Integration site 1
FAB	: French–American–British
FC	: Flow Cytometry
FDA	: Food and Drug Administration
FISH	: Fluorescence In Situ Hybridization
FLT3	: FMS-Like Tyrosine Kinase 3
FOX	: Forkhead-box gene
FTI	: Farynesyl Transferase Inhibitors
GIMEMA	: Gruppo Italiano Malattie Ematologiche Maligne
	dell'
GO	: Gemtuzumab Ozogamicin
HDACs	: Histone Deacetylases
HIV	: Human Immune Deficiency Virus
HLA	: Human Leucocyte Antigens
HMBA	: Hexamethylene Bisacetamide
HOX genes	: Homeobox Genes
HSV	: Herpes Simplex Virus
HTLV-I	: Human T-cell Leukemia Virus type –I
Htr A2	: High temperature requirement serine protease
	A2
Ig	: Immunoglobulin
IGH	: Immunoglobulin Heavy Chain Gene
Ins	: Insertions
Inv	: Inversions
ISSR	: Intersequence-Specific PCR
ITD	: Internal Tandem Duplications

List of Abbreviations (Cont.)

JAK	: Janus Family Of Cytosolic Tyrosine Kinases
lAPs	: Inhibitor Of Apoptosis Proteins
LATE-PCR	: Linear-After-The-Exponential-Pcr
LDH	: Lactate Dehydrogenase
LRP	: Lung Resist Protein
MAL	: Megakaryocytic Acute Leukemia
MDR1	: Multi- Drug Resistance Gene
MDS	: Myelodysplastic Syndrome
MEK	: Mitogen / Extracellular-Signal Regulated Kinase
M-FISH	: Multiplex Metaphase FISH
MGF	: Mast Cell Growth Factor
miRNA	: MicroRNA
MKK	: Map Kinase Kinase
MLL	: Mixed Lineage Leukemia or Myeloid/Lymphoid
	Leukemia Gene
MLPA	: Multiplex Ligation-Dependent Probe
	Amplification
moAbs	: Monoclonal Antibodies
MOZ	: Monocytic Leukemia Zinc Finger Protein Gene
MPO	: Myeloperoxidase
MRC	: Medical Research Council
MRP1	: Multi- drug resistance-associated protein 1
MSP	: Methylation-specific PCR
mTOR	: Mammalian target of rapamycin
MUM1 (IRF4)	: Multiple myeloma 1 or interferon regulatory
	factor 4
MYC	: Myelocytomatosis viral oncogene
NCI	: National Cancer Institute
NFkB	: Nuclear factor B
NPM	: Nucleophosmin
NSE	: Non specific esterase
NUP98	: Nucleoporin gene
OS	: Overall Survival
OTT	: One Twenty Two gene
P	: Short Arm Of Chromosome
P21	: Protein 21 kDa
P53	: Protein 53
PCM1	: Human Autoantigen Pericentriolar Material
PCR	: Polymerase Chain Reaction
PDGFA	: Platelet DERIVED Growth Factors Family
Pi3AKT	: Phosphoinositol Inositol 3-Kinase
PKC412	: Protein Tyrosine Kinase Inhibitor

List of Abbreviations (Cont.)

PKCα	: Protein Kinase α
PLZF	: Promyelocytic Leukemia Zinc Finger
PT	: Prothrombin Time
q	: Long Arm Of Chromosome
Q-PCR	: Quantitative PCR
RARa	: Retinoic Acid Receptor-a
RAS	: Retinoic Acid Syndrome
RB1	: Retinoblastoma Gene
RISC	: RNA-induced silencing complex
RITS	: RNA-induced transcriptional silencing
RNA	: Ribonucleic Acid
RQ-PCR	: Real-Time PCR
RTK	: Receptor Tyrosine Kinase
RT-PCR	: Reverse Transcriptase
RUNX1	: Runt-related transcription factor 1
	(Synonyms: AML,CBFA2)
SAHA	: Suberoylanilide Hydroxamic Acid
SBB	: Sudan black B
SCT	: Autologous Stem Cell Transplantation
shRNA	: Short Hairpin RNA
siRNA	: Interference RNA
SKY	: Spectral Karyotyping
Sm	: Surface Membrane
SMAC	: Second mitochondria derived activator of caspase
SMMHC	: Smooth Muscle Myosin Heavy Chain
	gene(MYH 11)
SNP	: Single Nucleotide Polymorphism
STAT	: Signal Transducer and Activator of
	Transcription proteins
t	: Translocations
TCR	: T-Cell Receptor Gene Rearrangements
TCRB	: T-cell receptor B gene
TdT	: Terminal Deoxynucleotidyl Transferase
TGFB1	: Fibroblast Growth Factors
TNFalpha	: Tumor Necrosis Factor Alpha
trx	: Drosophilia Trithorax
VDR	: Vitamin D receptor
WCPs	: Whole Chromosome Probes
WHO	: World Health Organization
WT1	: Wilms' tumor gene

List of Tables

	Page
Table 1: Conditions predisposing to the development of Acute Leukemia.	6
Table 2: Clinical Features of AL Related to Pathophysiology	7
Table 3: Morphologic FAB Classification of ALL in relation to cytochemical stains	9
Table 4: Morphologic FAB Classification of AML.	10
Table 5: WHO Classification of ALL	14
Table 6: WHO Classification of AML.	15
Table 7: BCSH and the US–Canadian Consensus Group for the Diagnosis and Classification of Acute Leukemia	17
Table 8: WHO Criteria for the diagnosis of biphenotypic leukaemia	18
Table 9: Cytogenetic/molecular genetic entities not included in the WHO classification of AML	20
Table 10: Cytologic Features of blasts in AL	22
Table 11: Significant Chromosomal Abnormalities in AML	44
Table 12: Significant Chromosomal Abnormalities in ALL	45
Table 13: Advantages and Disadvantages of Cytogenetics	76
Table 14: Advantages and Disadvantages of FISH Analysis	85
Table 15: Advantages and Disadvantages of PCR analysis	102
Table 16: Criteria for Complete Remission	116
Table 17: Role of High Dose Ara-C in Consolidation	118
Table 18: Relapse rates following allogenic stem cell transplantation, autologous stem cell transplantation and chemotherapy	119
Table 19: Prognostic Factors of Acute Lymphoblastic Leukemia	134
Table 20: Classic Prognostic Factors for AML	135

List of Figures

<u>Page</u>
Figure 1: Childhood acute lymphoblastic leukaemia, FAB L1 type 11
Figure 2: Childhood acute lymphoblastic leukaemia, FAB L2 type
Figure 3: 'Acute lymphoblastic leukaemia' of Burkitt type, FAB L3 type 11
Figure 4: The FAB classification of AML
Figure 5: Trisomy 5, cytogenetics (partial karyotype)
Figure 6: Trisomy 8. (cytogenetics)
Figure 7: Monosomy 7; cytogenetics (partial karyotype)
Figure 8: Del(5q): cytogenetics (partial karyotype)
Figure 9: Del (7)(q32):, cytogenetics (partial karyotype)
Figure 10: Del (9)(q13); cytogenetics (partial karyotype)
Figure 11: Del (17p)(11.1); cytogenetics (partial karyotype)
Figure 12: A diagrammatic representation of inv(3)(q21q26)
Figure 13: A diagrammatic representation of t(3;3) (q21;q26)
Figure 14: (a) A diagrammatic representation of inv (16) (p13q22); this is an example of a pericentric inversion. (b) A diagrammatic representation of t(16; 16) (p13; q22)
Figure 15: The translocation t(7;11), cytogenetics (partial karyotype)
Figure 16: The translocation t(8;14); cytogenetics (partial karyotype)
Figure 17: A diagrammatic representation of the t(8; 21) (q22; q22) abnormality
Figure 18: The t(9;22) [BCR/ABL]; cytogenetics (partial karyotype) 40
Figure 19: The translocation t(13;17); cytogenetics (partial karyotype) 42
Figure 20: The t(14;18) [IGH/BCL2]; cytogenetics (partial karyotype)

List of Figures

<u>Page</u>
Figure 21: A diagrammatic representation of the t (15; 17) (q22; q21) abnormality
Figure 22: Coexistence of WT1 mutations with mutations in other genes 69
Figure 23: RNA silencing pathways
Figure 24: Conventional cytogenetic analysis
Figure 25: Q banding
Figure 26: Examples of different types of FISH probes
Figure 27: Spectral Karyotyping (SKY)
Figure 28: The t(8;21) [RUNX1/ETO] translocation (FISH)
Figure 29: The t(15;17) [PML/RARα]; FISH
Figure 30: DNA fiber FISH using pools of long PCR products at gap-2 89
Figure 31: Schematic drawing of the PCR cycle
Figure 32: AML with t(8;21). Molecular analysis (PCR) shows ETO mRNA
Figure 33: Southern Blot Technique
Figure 34: CGH
Figure 35: DNA microarray. 107
Figure 36: Algorithmic approach to the diagnosis of acute leukemia
Figure 37: Phases of Therapy

INTRODUCTION

It's increasingly evident that molecular diagnostics will be pivotal in the delivery of safe and effective therapy for many diseases in the future. A huge body of new information on the genetic, genomic and proteomic profiles of different hematopoietic diseases is accumulating (*Braziel et al.*, 2003).

In patients with acute leukemia there have been different risks groups identified, which are mainly based on molecular subtype (i.e., genetic subtype and immune phenotype); patients still relapse within these apparent homogeneous subgroups. Recent researches aimed to identify genes and proteins that improve risk group classification based on molecular subtype and risk to relapse as well as to identify causes of cellular drug resistance and therapy failures (*Pieters et al., 2004*).

The realization of molecular signaling pathways that ultimately lead to cell proliferation and growth were largely unrecognized, underscored the importance of identifying molecular target specific therapy that would provide the potential of maximal therapeutic benefit while minimizing toxicity to normal cells (*Lander et al.*, 2001).

It has become evident that the new discovery and treatment paradigm oncology involves both the identification of critical genes and proteins involved in cell division and growth; and the fully characterization of the micro environment in which these genes control molecular switches (*Laheru*, 2003).

Several molecular targets for therapy were identified through research activities involving drug resistance profiles, collaborative gene expression profiling studies and others. The targets identified were varied e.g. the Tyrosine Kinase receptor, FLT3 (*Pieters et al., 2004*), molecular defect associated with the constitutively active Tyrosine Kinase fusion protein bcr/abl, the activating RAF mutations ... and others (*Liang et al., 2003*).