ELECTROMAGNETIC INVERSE SCATTERING FROM BURIED CYLINDER USING SUPPORT VECTOR REGRESSION

by Ayman Sherif Ismail Negm

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

ELECTROMAGNETIC INVERSE SCATTERING FROM BURIED CYLINDER USING SUPPORT VECTOR REGRESSION

by Ayman Sherif Ismail Negm

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Prof. Ragia Ismail Badr

Professor

Professor

Electronics and Communications Department
Faculty of Engineering, Cairo University

Prof. Ragia Ismail Badr

Dr. Islam Abdelsattar Eshrah

Associate Professor

Electronics and Communications Department
Faculty of Engineering, Cairo University

ELECTROMAGNETIC INVERSE SCATTERING FROM BURIED CYLINDER USING SUPPORT VECTOR REGRESSION

by
Ayman Sherif Ismail Negm
A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the Examining Committee
Prof. Ragia Ismail Badr, Thesis Main Advisor
Dr. Islam Abdelsattar Eshrah, Thesis Advisor
Prof. Dr. Amir Soryal Attiya, Internal Examiner
Prof. Dr. Said El-Sayed El-Khamy, External Examiner, Faculty of Engineering Alexandria University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

Engineer's Name: Ayman Sherif Ismail Negm

Date of Birth: 18/6/1988

Nationality: Egyptian

Phone: 01009244866

Email Address: ayman.negm@eng.cu.edu.eg

Registration Date: 1/10/2011

Awarding Date:

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors: Prof. Dr. Ragia Ismail Badr

Associate Prof. Dr. Islam Abdelsattar Eshrah

Examiners: Prof. Dr. Ragia Ismail Badr (Thesis Main Advisor)

Associate Prof. Dr. Islam Abdelsattar Eshrah (Thesis Advisor)

Prof. Dr. Amir Soryal (Internal Examiner)

Prof. Dr. Said El-Sayed El-Khamy (External Examiner, Faculty

of Engineering, Alexandria University)

Thesis Title: "Electromagnetic Inverse Scattering from Buried Cylinder using Support

Vector Regression"

Keywords: inverse scattering – buried cylinder – signal flow graph - Prony model -

support vector regression

Summary:

In this thesis, Support Vector Regression technique is used to solve the inverse scattering problem of a circular cylinder buried in a dielectric half-space. A fast and accurate technique based on T-matrix and Signal-Flow Graph is employed to solve the forward scattering problem. The solution of the forward problem is then used to generate dataset for training the Support Vector Machine (SVM). Feature extraction based on Prony modeling of reflection coefficient data is performed to simplify the training process. Selection of SVM parameters is performed using a hybrid optimization algorithm whose objective is to minimize the cross validation error over the training data. After the training process is complete, the SVM can be used to estimate the buried cylinder parameters in real-time. Different cases are studied and the results show good performance of the employed approach.

Acknowledgment

All praise is to almighty **ALLAH** who guided me, aided me and gave me strength to complete this thesis. I would like to express my sincere gratitude to my advisors, **Prof. Dr. Ragia Ismail Badr** and **Dr. Islam Abdelsattar Eshrah** for their guidance, kind patience and continuous support during my postgraduate years of study. I dedicate a special feeling of devotion to **Prof. Dr. Essam Hashish** for his kind guidance inspiration and encouragement. I would like to appreciate the help offered by the Electronics and Communications department staff, Faculty of Engineering, Cairo University. I would also like to thank my friends and colleagues for their true help and support throughout my postgraduate study. Finally I would like to thank my family for helping me survive all the stress during my study and not letting me give up.

Table of Contents

A	cknov	viedgme	ent	1
Li	st of '	Fables		vii
Li	st of l	Figures		X
Li	st of S	Symbols	S	ix
Li	st of	Abbrevi	iations	xiii
A l	bstrac	et		XV
1	Intr	oductio	o n	1
	1.1	Motiva	ation	 . 1
	1.2	Relation	on between Inverse Problem and Machine Learning	 . 2
	1.3	Locali	zation and Characterization Problems	 . 2
	1.4	Thesis	S Outline	 2
2	Lite	rature l	Review	5
	2.1	Mathe	ematical Formulation	 . 5
	2.2	Solution	on to the Inverse Scattering problem	 . 7
		2.2.1	Numerical Inversion of Integral Equations	 . 7
		2.2.2	Linearization	 . 7
		2.2.3	Iterative Approach	 . 7
			2.2.3.1 Gradient-based Scheme	 . 8
			2.2.3.2 Evolutionary Algorithms	 9
		2.2.4	Inspection Approach	 10
		2.2.5	Supervised Machine Learning Approach	 11
			2.2.5.1 Neural Network (NN)	 . 11
			2.2.5.2 Support Vector Machines (SVM)	 15
3	For	ward Sc	cattering Problem	21
	3.1	Proble	em Formulation	 21

	3.2	Signal	-Flow Graph (SFG) Approach	23
	3.3	Series	Truncation	24
	3.4	Series	Truncation for Wider Range	27
		3.4.1	PEC Cylinder in Lossless Half-Space	27
		3.4.2	PEC Cylinder buried in Dispersive Half-Space	27
		3.4.3	Dielectric Cylinder in Lossless Half-Space	28
		3.4.4	Dielectric Cylinder in Dispersive Half-Space:	30
	3.5	Efficie	ncy of the Proposed Approach	30
	3.6	Conclu	asion	31
4	Feat	ture Ext	raction based on Parametric Modeling of Forward Problem Data	37
	4.1	Introdu	uction	37
	4.2	Dampe	ed Exponential Model	38
		4.2.1	Singular Value Decomposition (SVD)	39
		4.2.2	Extraction of Prony Model Parameters	39
	4.3	The Si	gnificance of Extracted Poles	40
	4.4	Applic	eation of Prony Model to the Buried Cylinder problem	40
	4.5	Main F	Features extracted from Prony model	41
	4.6	Handli	ing Issues related to Prony Model	45
		4.6.1	Variant Model Order	45
		4.6.2	Cylinder Buried in unknown Half-Space	45
	4.7	Conclu	asion	45
5	Opti	imized S	Support Vector Regression	47
	5.1	Structu	aral Risk Minimization and Empirical Risk Minimization	47
	5.2	Trainir	ng Phase	48
		5.2.1	Mathematical Formulation of the SVR model	48
		5.2.2	Mapping of Input Vectors for Non-Linear Regression	
		5.2.3	Optimization Algorithm	51
		5.2.4	User-defined parameters of SVR	52
			5.2.4.1 Kernel function	
			5.2.4.2 The ratio of support vectors (v)	53
			5.2.4.3 The trade-off constant (C)	53
		5.2.5	Optimized Selection of SVR Hyperparameters	54
			5.2.5.1 Artificial Bee Colony (ABC) Algorithm	54
			5.2.5.2 Simplex Algorithm	55
			5.2.5.3 Optimization Approach	56
		5.2.6	Calculation of Bias Term b	56
	5.3		g Phase	57
	5 4	Conclu		58

6	Resu	ults and Discussion	59
	6.1	Software Tools for SVR implementation	60
	6.2	Data Preprocessing and Postprocessing	61
		6.2.1 Removal of Irrelevant data	61
		6.2.2 Normalization	61
		6.2.3 Denormalization	61
	6.3	Objective Function and Accuracy Measure	61
	6.4	PEC cylinder buried in Dielectric Half-space	62
	6.5	Dielectric Cylinder Buried in Dispersive Dielectric Half-space	64
		6.5.1 Reconstruction of Radius and Permittivity for a given Depth	64
		6.5.2 Reconstruction of Radius, Depth and Permittivity	65
		6.5.3 Robustness of Estimation	70
	6.6	Dielectric cylinder buried in an Unknown Half-Space	70
	6.7	Conclusion	71
7	Con	clusion and Future Work	73
	7.1	Summary of the work	73
	7.2	Future Work	74
Li	st of I	Publications	75
Re	feren	ices	77

List of Tables

2.1	Comparison between SVM and NN	15
2.2	Advantages and Disadvantages of Different Techniques	19
3.1	Ranges involved in T-matrix calculations	26
3.2	Ranges of variables for Truncation Order calculation	27
3.3	Ranges of variables for Truncation Order calculation for dielectric case .	29
3.4	Different simulation cases for buried PEC cylinder	31
3.5	Different simulation cases for buried Dielectrc cylinder	32
6.1	Ranges of Parameters	62
6.2	Error in reconstruction of radius and depth of buried PEC cylinder	62
6.3	Error in reconstruction of radius and depth of buried PEC cylinder	63
6.4	Ranges of Parameters	64
6.5	Ranges of Parameters	65
6.6	Erros in Reconstruction of Radius	65
6.7	Errors in Reconstruction of Relative Permittivity	65
6.8	Error in Reconstruction of Radius using Direct data	68
6.9	Error in Reconstruction of Radius using Prony Features	68
6.10	Error in Reconstruction of Buried Cylinder parameters using NN and	
	SVM approaches	69
6.11	Average Estimation Error under the effect of noise using threshold-based	
	fitting	70
6.12	Average Estimation Error under the effect of noise using 3 poles fitting .	70
6.13	Reconstruction Accuracy for Unknown Lossless Half-Space $(\varepsilon_r = 3)(3$	
	phase+3 singular values)	71
6.14	Reconstruction Accuracy for Unknown Lossless Half-Space $(\varepsilon_r = 4)(3$	
	phases+3 singular values)	71
6.15	Reconstruction Accuracy for Unknown Lossless Half-Space ($\varepsilon_r = 14$)(2	
	phases+2 singular values)	71