CHARACTERISTICS OF MILK PROTEINS AS AFFECTED BY SOME TECHNOLOGICAL PROCESSING PARAMETERS

By

MOHAMED YOUSEF MOHAMED ABO EL-NAGA

B.Sc. Agric. Sci. (Dairy Science), Ain Shams Univ, 2003. M.Sc. Agric. Sci. (Dairy Science), Ain Sham Univ, 2010.

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Dairy Science & Technology)

Food Science Department Faculty of Agriculture Ain Shams University

Approval Sheet

CHARACTERISTICS OF MILK PROTEINS AS AFFECTED BY SOME TECHNOLOGICAL PROCESSING PARAMETERS

By

MOHAMED YOUSEF MOHAMED ABO EL-NAGA

B.Sc. Agric. Sci. (Dairy Science), Ain Shams Univ, 2003. M.Sc. Agric. Sci. (Dairy Science), Ain Sham Univ, 2010.

This thesis for Ph.D. degree has been approved by:		
Dr. Nabil M. Mehanna Prof. Emeritus of Dairy Sci., Fac. of Agric., Kafr El-Sheikh University.		
Dr. Ali Abd El-Aziz Ali Prof. of Dairy Sci., Fac. of Agric., Ain Shams University.	•	
Dr. Zakaria M. R. Hassan Prof. of Dairy Sci., Fac. of Agric., Ain Shams University.		
Dr. Mohamed A. El- Hofi Prof. Emeritus of Dairy Sci., Fac. of Agric., Ain Shams University		

DATE OF EXAMINATION: / / 2016

CHARACTERISTICS OF MILK PROTEINS AS AFFECTED BY SOME TECHNOLOGICAL PROCESSING PARAMETERS

By

MOHAMED YOUSEF MOHAMED ABO EL-NAGA

B.Sc. Agric. Sci. (Dairy Science), Ain Shams Univ, 2003. M.Sc. Agric. Sci. (Dairy Science), Ain Sham Univ, 2010.

Under the supervision of:

Dr. Mohamed A. El- Hofi

Prof. Emeritus of Dairy Sci., Food Sci. Dept., Faculty of Agriculture, Ain Shams University (Principle Supervisor).

Dr. Zakaria M. R. Hassan

Prof. of Dairy Sci., Food Sci. Dept., Faculty of Agriculture, Ain Shams University.

Dr. Samah M. Shalby

Associate Prof. of Dairy Science and Technology, Faculty of Agriculture, Ain Shams University

خواص بروتينات اللبن وتأثرها ببعض المعاملات التكنولوجية

رسالة مقدمة من

محمد يوسف محمد أبو النجا

بكالوريوس علوم زراعية (علوم وتكنولوجيا الألبان)، كلية الزراعة، جامعة عين شمس، 2003 ماجستير علوم زراعية (علوم وتكنولوجيا الألبان) ، كلية الزراعة، جامعة عين شمس، 2010

للحصول على

درجة دكتور الفلسفة في العلوم الزراعية (علوم وتكنولوجيا الألبان)

قسم علوم الأغذية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

خواص بروتينات اللبن وتأثرها ببعض المعاملات التكنولوجية

رسالة مقدمة من

محمد يوسف محمد أبو النجا

بكالوريوس علوم زراعية (علوم وتكنولوجيا الألبان)، كلية الزراعة، جامعة عين شمس، 2003 ماجستير علوم زراعية (علوم وتكنولوجيا الألبان)، كلية الزراعة، جامعة عين شمس، 2010

المحصول على درجة دكتور الفلسفة في العلوم الزراعية (علوم وتكنولوجيا الألبان)

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة:

د. نبيل محمد مهنا أستاذ علوم وتكنولوجيا الألبان المتفرغ ، كلية الزراعة، جامعة كفر الشيخ
د. علي عبد العزيز علي أستاذ علوم وتكنولوجيا الألبان ، كلية الزراعة، جامعة عين شمس
د. زكريا محمد رزق حسن أستاذ علوم وتكنولوجيا الألبان ، كلية الزراعة ، جامعة عين شمس
د. محمد عبد الله الحوفى أستاذ علوم وتكنولوجيا الألبان المتفرغ، كلية الزراعة، جامعة عين شمس

تاريخ المناقشة / / 2016

جامعة عين شمس كلية الزراعة

رسالة دكتوراة

اسم الطالب : محمد يوسف محمد أبو النجا

عنوان الرسالة : خواص بروتينات اللبن وتأثرها ببعض المعاملات

التكنولوجية

اسم الدرجة : دكتور الفلسفه في العلوم الزراعية (علوم وتكنولوجيا

الألبان)

لجنة الإشراف:

د. محمد عبد الله الحوفي

أستاذ علوم وتكنولوجيا الألبان المتفرغ ، قسم علوم الأغذية ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. زکریا محمد رزق حسن

أستاذ علوم و تكنولوجيا الالبان ، قسم علوم الأغذية ، كلية الزراعة ، جامعة عين شمس

د. سماح محمد شلبي

أستاذ علوم وتكنولوجيا الألبان المساعد ، قسم علوم الأغذية ، كلية الزراعة ، جامعة عين شمس

تاريخ التسجيل: 4 / 10 / 2010

الدراسات العليا

أجيزت الرسالة بتاريخ / 2016

ختم الإجازة

موافقة مجلس الجامعة

موافقة مجلس الكلية

2016 / /

2016 / /

ACKNOWLEDGEMENT

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Mohamed A. El-Hofi,** Professor of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University for the kind attention and greater help provided for the accomplishment of this work and for his efforts, supervising the research, writing the manuscript and encouraging me through this course. It is difficult to express in words my deep respect to him.

Thanks and gratefulness will not be enough to **Prof. Dr. Zakaria M. R. Hassan,** Professor of Dairy Science and Technology,
Food Science Department, Faculty of Agriculture, Ain Shams
University, for his true efforts throughout the lab work and writing the
manuscript, and encouraging me through this course. He learnt me
many things which I never have had the opportunity to learn.

Thanks to **Dr. Samah M. Shalby**, Associate Prof. of Dairy Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University.

My sincere thanks are also extended to **Prof. Dr. Thomas Kleinschmidt** and **Mrs. Ch. Fischer** (Institute of Food Technology, Anhalt University of Applied Science, Germany) for their help in the chromatographic analysis of native whey proteins and HMF.

The author would like to express his deep thanks to **Prof. Dr. Yehia Heikal**, Professor of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for his help during the experimental work.

I would like to thank all the stuff members of Food Science and Technology Department at Ain Shams University. Thanks also to every one who provided help or advised me to achieve this manuscript.

CONTENTS

	page
LIST OF TABLES	IV
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	X
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Milk proteins characteristics	6
2.2. Effect of some technological parameters on milk protein characteristics	9
2.2.1 Cold Storage	9
2.2.2. Heat treatments	10
2.2.3. Homogenization	31
3. MATERIALS AND METHODS	35
3.1. MATERIALS	35
3.1.1. Buffalo's milk	35
3.1.2. Rennet	35
3.1.3. Survey of heat indices in market milk samples	35
3.1.4. Standard materials	35
3.2. METHODS	35
3.2.1. Milk protein preparations	35
3.2.1.1 Preparation of heated buffalo milk samples	35
3.2.1.2. Preparation of acid casein	36
3.2.1.3 Preparation of Rennet casein	37
3.2.2. Chemical analysis:	38
3.2.2.1. Nitrogen contents	38
3.2.2.2. Acidity	39
3.2.2.3 pH	39
3.2.2.4. Ethanol stability	39
3.2.2.5. Acid soluble whey proteins content	39
3.2.2.6. Lactulose content	40

3.2.2.7. Hydroxymethylfurfural content	40
3.2.2.8.Protein carbonyl measurements	41
3.2.2.9. Protein degradation	41
3.2.2.10. Poly Acrylamide Gel Electrophoresis	42
3.2.2.11. Amino acids composition	42
3.2.3. Determination of volatile flavors	43
3.2.3.1. Isolation of headspace volatiles	43
3.2.3.2. Gas Chromatography Analysis	43
3.2.4. Microstructure of milk samples	44
3.2.5. Viscosity measurements	45
3.2.6. Surface tension	45
3.2.7. color measurements	46
3.2.8. Functional properties of protein preparations	46
3.2.8.1. Water and oil binding capacities	46
3.2.8.2. Emulsifying capacity and emulsion stability	46
3.2.8.3. Foaming capacity and foam volume stability	47
3.2.8.4. Buffer intensity	48
3.2.9. Rennet coagulation time (RCT)	48
3. 2.10.Curd firmness	49
3.2.11.Curd syneresis	49
3.2.12.Statistical analysis	49
4. RESULTS AND DISCUSSION	50
4.1. Temperature profile of buffalo skim milk	50
4.1.1. Evaluation of heat transfer characteristics during thermal processing of buffalo's skim milk samples	51
4.1.2. Heat induced changes in buffalo skim milk	53
4.1.2.1 pH and acidity values	53
4.1.2.2. Ethanol stability	54
4.1.2.3. Surface tension	54
4.1.2.4. Nitrogen distribution of heated buffalo skim milk	55

4.1.2.5. Protein carbonyl contents in heated buffalo	57				
milk					
4.1.2.6. Protein degradation	62				
4.1.2.7. Amino acid composition of heat treated	66				
buffalo milk					
4.1.2.8. Poly acrylamide gel electrophoresis	70				
4.1.2.9. Acid soluble whey proteins of heat treated buffalo milk	71				
4.1.2.10. Hydroxymethylfurfural and Lactulose	75				
4.1.2.11. Composition of volatile compounds	83				
<u>*</u>	03				
4.1.2.12: Technological parameters of heat treated buffalo milk	89				
4.1.2.13. Flow behavior of heated buffalo's milk	90				
4.1.2.14: Colour parameters of heated buffalo milk:	100				
4.1.2.15. Microstructure of heat treated skim buffalo	100				
milk	106				
4.2. Functional properties of buffalo milk protein	109				
preparations as affected by heat treatments	109				
4.2.1. Foaming capacity and stability:	109				
4.2.2. Emulsion activity index and stability	118				
4.2.3. Water and oil capacities	126				
4.2.4. Buffering capacity of heat treated buffalo milk	130				
casein	130				
4.3. Survey and evaluation of the industry processed	134				
milk samples available in Egyptian local market	134				
4.3.1. Nitrogen distribution	134				
4.3.2. Protein carbonyl, hydroxymethylfurfural and	135				
lactulose contents					
4.3.3. Colour parameters of milk market samples	141				
4.3.4. Poly acrylamide gel electrophoresis	142				
4.3.5. Acid soluble whey proteins	144				
5. SUMMARY					
6. REFERENCES					
ARABIC SUMMARY					

LIST OF ABBREVIATION

AOAC Association of Official analytical Chemists

BSA Bovine Serum Albumin

α-La Alpha lactalbumin
 β-Lg Beta lactoglobulin
 κ-CN Kappa casein

κ-CN Kappa caseinγ -CN Gamma casein

Ca₃(PO₄)₂ Tri-calcium phosphate

cm Centimeter CP CentiPoise

° C Centigrade degree

g Gram

K Consistency valuem Pa.s Milli Pascal per second

min Minute
ml Milliliter
mm Millimeter
nmol Nano mole

µg Micro gram

mg Milligram

HMF Hydroxymethylfurfural mN/m Milli Newton per meter n flow behaviour index NPN Non Protein Nitrogen

RCT Rennet Coagulation Time

Sec. Second

SN Soluble Nitrogen
ST Surface Tension

TEM Transmission Electron Microscopy

TN Total Nitrogen

TS Total Solids

μ Dynamic viscosity value

 γ shear rate τ Shear stress

NCN Non casein nitrogen
CN Casein nitrogen

N Normality

WPC Whey protein concentrate
MPC Milk protein concentrate
PBS Phosphate buffer saline
MFGM Milk fat globule membrane
UHT Ultra high temperature

MCC Micellar casein concentrates

R-MCC Reconstituted micellar casein concentrates

MCN Micellar casein
SCN Sodium caseinates

UHPH Ultra-high pressure homogenization

BI Browning index

U Heat transfer coefficient

 Δ E Total Colour Index

Cp Specific heat value

A Surface area (m^2)

PC Protein carbonyl content

LIST OF FIGURES

No	Title	Page
1	Flow diagram of process stages for preparation of heated	36
	buffalo milk samples	
2	The procedure followed to prepare the heated buffalo	38
	milk protein preparations	
3	Temperature profile of skim buffalo milk during heating process in oil bath	51
4	Changes of Protein carbonyl contents (nmol/mg protein)	
•	of buffalo milk as affected by heat treatments during	61
	cold storage at 7±2°C and 25±2°C	
5	Changes of % protein breakdown in buffalo milk as	
	affected by heat treatments during cold storage at 7±2°C	66
	and 25±2°C	
6	Electrophoretic patterns of raw and heat treated buffalo	71
	milk	/ 1
7	Chromatographic profiles for native whey proteins of	74
	unheated and heat treated buffalo milk	, ,
8	Chromatographic profile of standard HMF , lactulose	77
	and lactose	, ,
9	Chromatographic determination of HMF and lactulose in	78
	raw buffalo milk	, ,
10	Chromatographic determination of HMF and lactulose	79
	in buffalo milk heated at 72°C/15 sec.	,,,
11	Chromatographic determination of HMF and lactulose in	80
	buffalo milk heated at 90°C/10 min.	
12	Chromatographic determination of HMF and lactulose in	81
	buffalo milk heated at 110°C/ 10 min.	
13	Chromatographic determination of HMF and lactulose in	82
	buffalo milk heated at 137°C/3 sec	

VIII

14	skim buffalo milk Chromatographic profile of volatile compounds in	86
15	heated skim buffalo milk at 72° C/ 15 sec	87
16	Chromatographic profile of volatile compounds in heated skim buffalo milk at 137° C/ 3 sec	88
17	Flow curves of raw buffalo milk, heated at 72°C/15sec and 90°C/10 min during storage at 7°C±2.	93
18	Flow curves of buffalo heated milk at 110°C/10 min and heated at 137°C/3 sec during storage at 25°C±2.	94
19	Dynamic viscosity of raw buffalo milk, heated at 72°C/15sec and 90°C/10 min during storage at 7°C±2.	97
20	Dynamic viscosity of buffalo heated milk at 110°C/10 min and heated at 137°C/3 sec during storage at 25°C±2.	98
21	lightness value of buffalo milk as affected by heat treatments during storage at 7°C and 25 ± 2 °C	105
22	Casein micelles micrographs of raw skim buffalo milk and heat treated at 90°C/10 min,110 °C/10 min and 137°C/3sec.	108
23	Foaming capacity (F.C %) of rennet milk protein preparations.	113
24	Foam volume stability (F.V.S %) of rennet milk protein prepared from raw milk.	113
25	Foam volume stability (F.V.S %) of rennet milk protein prepared from heated milk at 72°C/15 sec.	114
26	Foam volume stability (F.V.S %) of rennet milk protein prepared from heated milk at 90°C/10 min.	114
27	Foam volume stability (F.V.S %) of rennet milk protein prepared from heated milk at 110°C/10 min	114
28	Foaming capacity (F.C %) of acid milk protein preparations.	116