

# SPINAL CORD PROTECTION DURING THORACIC & THORACOABDOMINAL AORTIC ANEURYSM REPAIR SURGERY

#### An Essay

Submitted for partial fulfillment of Master Degreein

Anesthesiology

Presented by

#### Haitham Mohy El-Den Mahmoud Othman

M.B.B.Ch.

Faculty of Medicine – Ain Shams University

**Under Supervision of** 

#### Prof. Alaa Eid Mohamed Hassan

Professor of Anesthesiology, Intensive Care & Pain Management Faculty of Medicine – AinShamsUniversity

#### Dr. Ibrahim Mamdouh Esmat

Lecturer of Anesthesiology, Intensive Care & Pain Management Faculty of Medicine - Ain Shams University

#### Dr. Mohammed Mahmoud Maarouf

Lecturer of Anesthesiology, Intensive Care & Pain Management
Faculty of Medicine - Ain Shams University
Faculty of Medicine
AinShams University
2015

#### Content

| • | Introduction 1                                          |
|---|---------------------------------------------------------|
| • | Aim of the work                                         |
| • | Chapter one: Anatomy & Blood supply of the spinal cord  |
|   | 4                                                       |
| • | Chapter two: Pathology of aortic aneurysm17             |
| • | Chapter three: Surgical techniques for thoracoabdominal |
|   | aortic aneurysm & Risk factors for spinal cord ischemia |
|   | during thoracoabdominal aortic interventions40          |
| • | Chapter four: Spinal cord protection strategies during  |
|   | thoracoabdominal aortic interventions                   |
| • | Summary 93                                              |
| • | References95                                            |
| • | Arabic summary                                          |

#### **List of Figures**

| Fig. No. | Title                                                                                                                 | Page<br>No. |
|----------|-----------------------------------------------------------------------------------------------------------------------|-------------|
| 1        | The posterior and anterior roots in relation to the gray and white matter of the spinal cord                          | 5           |
| 2        | Relation of segments of the spinal cord and spinal nerves to the vertebral column                                     | 6           |
| 3        | Major tracts of the spinal white matter at midcervical level                                                          | 8           |
| 4        | Segmental blood supply of the spinal cord                                                                             | 12          |
| 5        | Spinal cord blood supply                                                                                              | 14          |
| 6        | Anatomic drawing showing the different blood-supplying trajectories to the thoracolumbar spinal cord in TAAA patients | 15          |
| 7        | Ascending Aorta                                                                                                       | 19          |
| 8        | Ascending and arch of aorta                                                                                           | 21          |
| 9        | Branches of abdominal aorta                                                                                           | 22          |
| 10       | Gross view of the aorta in a 20-year-old patient who died from a road accident.                                       | 25          |
| 11       | Schematic diagrams of fusiform and saccular aneurysms                                                                 | 37          |
| 12       | The Crawford classification scheme for thoraco-abdominal aortic aneurysm repairs                                      | 38          |
| 13       | Endotracheal tubes used for Single-lung ventilation                                                                   | 46          |
| 14       | Incision and exposure                                                                                                 | 48          |
| 15       | Methods of mechanical circulatory management during cross-clamping of the                                             | 66          |

| Fig.<br>No. | Title                                                                                                                            | Page<br>No. |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|
|             | descending thoracic aorta.                                                                                                       |             |
| 16          | Patient position and needle insertion.                                                                                           | 74          |
| 17          | SSEP/MEP monitoring                                                                                                              | 85          |
| 18          | ASIA standards for classifying spinal cord injury                                                                                | 86          |
| 19          | Coronal multiplanar reformations of preoperative MRA images in a 69-year-old male patient with a Crawford type I aortic aneurysm | 92          |

#### List of Abbreviations

AAA: Abdominal aortic aneurysms

ASA: Anterior spinal artery

ASIA: American Spinal Injury Association

ARM: Artery of Adamkiewicz BAV: Bicuspid aortic valve

CAD: Coronary artery disease

COPD: Chronic obstructive pulmonary disease

CPB: Cardiopulmonary bypass

CSF: Cerebrospinal fluid

CSFP: cerebrospinal fluid pressure

CT: Computed tomography

Computerized tomographic angiography

CTA:

CVP: Central venous pressure

DHCA: Deep hypothermic circulatory arrest

DLT: Double-lumen endobronchial tube

GRA: Great radicular artery of Adamkiewicz

HCTD: Hereditary connective tissue disease

ICH: Intracranial hemorrhage

International Standards for Neurological

ISNCSCI: Classification of Spinal Cord Injury

LAFB: Left atrial-femoral bypass

LDS: Loeys-Dietz syndrome

MAP: Mean arterial pressure

MEP: Motor evoked potentials

MFS: Marfan syndrome

MRA: Magnetic Resonance Angiography

MRI: Magnetic resonance imaging

PAC: Pulmonary artery catheter

PLHB: Partial left heart bypass

PSAs: Posterior spinal arteries

SAs: Spinal arteries

SCBF: Spinal cord blood flow

SCI: Spinal cord ischemia

SCPP: spinal cord perfusion pressure

SSEP: somatosensory evoked potentials

TAAA: Thoracoabdominal aortic aneurysm

TEE: Transesophageal echocardiography

TEVAR: Thoracic EndoVascular Aortic Repair

TGFBR1: Transforming growth factor  $\beta$  receptor I

TGFBR2: Transforming growth factor  $\beta$  receptor II



## **Introduction**



#### **Introduction**

The mortality and morbidity of extensive thoracoabdominal aorta replacement has improved markedly in recent years. However, postoperative paraplegia from spinal cord infarction remains the most devastating complication that faces patients undergoing surgery on the thoracoabdominal aorta because loss of lowerlimb function imposes severe constraints on the quality of life. Additionally, paraplegia is associated with higher postoperative mortality and morbidity. Despite advances in spinal cord protection, the risk of spinal cord ischemia or infarction as a consequence of open surgical repair of thoracoabdominal (TAAAs) remains aortic within the aneurysms range of 8-28% (Greenberg et al., 2008).

There are two major events during which injury to the spinal cord can occur. Firstly, spinal cord injury happens depending on the duration and degree of ischemia during cross-clamping. The surgeon must temporarily interrupt aortic blood flow to the lower body, which renders the distal organs (including the spinal cord) ischemic, in order to resect the aneurysm. Secondly, damage may occur from the loss of blood flow to the spinal cord after the period of aortic cross-clamping because of failure to reattach the intercostal and lumbar arteries that are critical to the spinal cord blood supply (**Eide et al., 2005**).

Risk factors for spinal cord ischemia include extensive aortic repair, spinal cord malperfusion on clinical presentation, systemic hypotension, acute anemia, prolonged aortic clamping, prior thoraco- abdominal aortic segment repair, extent of preservation of spinal segmental arterial supply and systemic vasodilation with vascular steal (Augoustides et al., 2014).

Strategies to prevent and treat spinal cord ischemia after thoracic aortic operations primarily involve techniques to make the spinal cord less susceptible to infarction, minimize the duration of cord ischemia during operation, augment spinal cord blood flow hemodynamics and early detection of spinal cord ischemia to permit immediate intervention. Interventions such as deliberate hypothermia, spinal cerebrospinal fluid drainage, increasing arterial pressure, epidural mean cooling effective for minimizing arterial steal were preventing paraplegia (Acher & Wynn, 2009).



## **Aim of the Work**



#### Aim of the work

The goal of this essay is to study spinal cord ischemia due to thoracic or thoracoabdominal aortic aneurysm repair and to discuss the strategies employed to prevent or reduce spinal cord ischemia, as well as methods of monitoring of motor function during surgery.



# Anatomy & Blood supply of the spinal cord



#### **Spinal cord Anatomy:**

The spinal cord is a cylindrical structure, slightly flattened dorsoventrally and located in the spinal canal of the vertebral column. Protection for the cord is provided not only by the vertebrae and their ligaments but also by the meninges and a cushion of cerebrospinal fluid (CSF) (*Kiernan & Rajakumar*, 2013).

The spinal cord is continuous with the brainstem proximally and terminates distally in the conus medullaris as the filum terminale (fibrous extension) and the cauda equina (neural extension). This distal termination varies from L3 in infants to the lower border of L1 in adults because of differential growth rates between the bony vertebral canal and the central nervous system. The spinal nerve contains motor and sensory nerve fibers to and from all parts of the body (*Kiernan & Rajakumar*, 2013).

The spinal cord is enlarged in two regions for innervations of the limbs. The cervical enlargement includes segments C5 to T1, with most of the corresponding spinal nerves forming the brachial plexuses for the nerve supply of the upper limbs. Segments L2 to S3 are included in the lumbosacral enlargement and the corresponding nerves constitute most of the lumbar and sacral plexuses (L1-S4) for the innervation of the lower limbs (*Moore et al., 2007*).

There are 31 spinal cord segments, each with a pair of ventral (anterior) and dorsal (posterior) spinal nerve roots, which mediate motor and sensory function, respectively. The ventral and dorsal nerve roots combine on each side to form the spinal nerves as they exit from the vertebral column through the neuroforamina. Each spinal cord segment innervates a dermatome (*Moore et al.*, 2007).

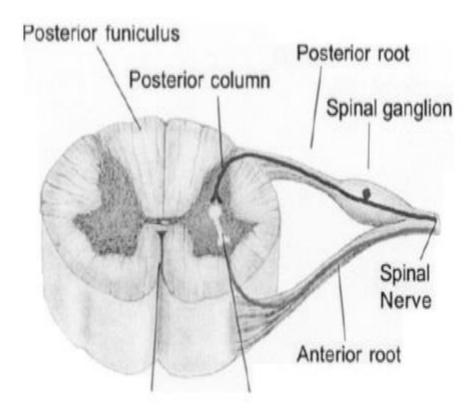



Fig. 1 The posterior and anterior roots in relation to the gray and white matter of the spinal cord (*Jacobson & Marcus*, 2011).