Labial Bone Preservation and Soft Tissue Profile using the Socket-Shield Technique in anterior Immediate and delayed Implant Placement

Thesis Submitted in partial Fulfillment of PH.D degree requirements in Oral Medicine, Periodontology and Oral Diagnosis.

Presented By

Mohamed Wagdy Mohamed Abdelrahman Bissar

B.D.S 2006 (Ain-Shams University) M.D.S 2013 (Ain-Shams University)

Under Supervision Of

Dr. Khaled Atef Abdelghaffar

Professor of Oral Medicine, Periodontology, and Oral Diagnosis,

Faculty of Dentistry, Ain Shams University

Dr. Mohamed Sherif El-Mofty

Assistant professor of Oral Medicine, Periodontology, and Oral Diagnosis,

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry

Ain Shams University 2017

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Dr. Khaled Atef Abdel Ghaffar**, Professor of Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Faculty of Dentistry, Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mohamed Sherif El-mofty**, assistant professor of Oral Medicine,
Periodontology, Oral Diagnosis and Radiology, Faculty of
Dentistry, Ain Shams University for his sincere efforts,
fruitful encouragement.

Mohamed Wagdy Bissar

Dedication

This work is dedicated to ...

My beloved Parents, to whom I owe everything I ever did in my life.

And my sister that loved me more than anything in the world.

And my wife for being the light of my life.

List of Content

Chapter	Page number
References	1
Review of Literature	5
Aim of Study	46
Subjects and Methods	47
Results	75
Discussion	90
Conclusion	99
Recommendation	100
Summary	101
References	103
Arabic Summary	

List of Figures

Fig.no.	Figure title	Pg.no.
1	Esthetic failures exist in the form of midfacial recession	7
2	Thin wall phenotype in association with IIP	8
3	No BG with a wide JGD with a CBCT follow up	10
4	BG used to fill the JGD	11
5	EIP with GBR	13
6	Loss of bundle bone followed by loss of LPB	16
7	LPB preserved at the site of root fragment	26
8	New cementum covering the treated denti surface	27
9	High magnification of the internal part of the root fragment	28
10	Detailed view demonstrating layers of new cementum as well as mineralized tissue on the implant surface	29
11	B-SEM micrograph illustrating newly formed cementum on dentin and the presence of cementocyte lacunae	30
12	Detailed view of Figure 7 showing the tooth fragment in contact with the tips of the implant threads	31
13	Higher magnification of the tip of a thread integrated into newly formed cementum and amorphous mineralized tissue	32
14	B-SEM micrograph demonstrating the integration of the implant surface (IMP) into newly formed cementum	33
15	Modified socket seal procedure	34
16	Schematic diagram representing sample grouping	48
17	Decoronation	50
18	Osteotomy drilling using a surgical guide	50
19	Remaining root structure was splited horizontally	51
20	Extracting the palatal part of the root	51

21	Implant placed palatal to the labial shield	52
22	Buccal view of the transfer cope immediately after implant placement	53
23	Occlusal view of the transfer cope immediately after implant placement	53
24	Apical view of the implant analogue in the place	54
25	Buccal view of the implant analogue in the place	54
26	Occlusal view of healing abutment immediately after implant placement	55
27	Buccal view of healing abutment immediately after implant placement	55
28	Occlusal view of healing abutment three days post surgically	56
29	Buccal view of healing abutment three days post surgically	56
30	Soft tissue profile three days post surgically	57
31	Buccal view of screw retained hybrid polymethyle methacrylate prosthesis on cast with the gingival wax	57
32	Buccal view of screw retained hybrid polymethyle methacrylate prosthesis on cast attached to implant analogue	58
33	Occlusal view of screw retained hybrid polymethyle methacrylate prosthesis showing the position of connecting screw	58
34	Buccal view of screw retained hybrid polymethyle methacrylate prosthesis intraoral three days post surgically	59
35	Occlusal view of screw retained hybrid polymethyle methacrylate prosthesis intraoral three days post surgically	59
36	Occlusal view of the Collagen plug	61
37	Cross over suture	61
38	Soft tissue contour three months after palatal part removal	62
39	Buccal view of the Paralling pin placed trans mucosal	62

40	Occlusal view of the Paralling pin placed trans mucosal	63
41	Remaining root after a traumatic extraction for immediate	65
	implant placement	
42	Preoperative CBCT coronal section of the labial plate of bone	68
43	Follow up CBCT coronal section of the labial plate of bone	68
44	Preoperative and Follow up CBCT coronal section superimposition	69
	for labial plate of bone thickness and height	
45	Preoperative CBCT coronal section of the labial plate of bone density	69
46	Follow up CBCT coronal section of the labial plate of bone density	70
47	Superimposition of the preoperative and follow up 3D reconstruction	70
48	Surgical site of the Superimposition of the preoperative and follow up 3D reconstruction	71
49	Color coding of the sagittal section of implant placed palatal to the root shield	71
50	Superimposition of the preoperative and follow up casts	73
51	Superimposition of the preoperative and follow up casts on CBCT	73
	3D reconstructed model	
52	Volumetric analysis of labial soft tissue	74
53	Labial plate of bone height difference	78
54	Labial plate of bone thickness difference	79
55	Labial plate of bone density difference	81
56	Soft tissue difference difference	82
57	Correlation between bone thickness and soft tissue thickness of group A	83
58	Correlation between bone thickness and soft tissue thickness of group B	84
59	Correlation between bone thickness and soft tissue thickness of group C	84

60	Volumetric analysis of soft tissue of group "A" sagittal section	85
61	Volumetric analysis of soft tissue of group "A" coronal section	85
62	Occlusal view of soft tissue profile of group "A" 3 months post operatively	86
63	Magnified Occlusal view of soft tissue profile of group "A" 3 months post operatively	86
64	Labial view of soft tissue profile of group "A" 3 months post operatively	87
65	Volumetric analysis of soft tissue of group "B" sagittal section	87
66	Volumetric analysis of soft tissue of group "C" sagittal section	88

List of Tables

Fig.no.	Table title	Pg.no.
1	Test of normality	76
2	Labial plate of bone height difference	77
3	Labial plate of bone thickness difference	78
4	Labial plate of bone density difference	80
5	Soft tissue difference difference	81
6	Correlation between bone thickness and soft tissue thickness	83

Introduction

Dental implants are frequently used to replace missing anterior teeth, teeth loss due to trauma, or teeth removed due to unfavorable restorative conditions. The process of tooth replacement by means of a dental implant and a crown is diverse and it relies on a complex array of clinical and pragmatic factors. Implants may be placed into extraction sockets immediately or at some period of time following extraction and wound healing. Following implant placement, provisionalization or direct occlusal loading may be generated immediately or after the process of osseointegration has been completed.

Both submerged (two-stage) and non-submerged (one-stage) approaches may be utilized. All these methods include tooth extraction followed by implant placement and loading at different times. At present, clinical data indicates implant survival is possible following all of these routes of treatment.

Beyond measurement of implant survival, there is little data concerning the fate of the buccal plate after implant placement in sites where teeth have been recently removed. The concern levied here is for architectural changes in the alveolar bone following extraction and subsequent to implant placement.

Unanticipated and excessive tissue changes can result in unacceptable esthetic deficits that range from soft tissue asymmetry to facial tissue discoloration to marked tissue dehiscence and abutment or implant exposure .(1)

Clinicians must realize that alveolar resorption is a consequence of tooth extraction or avulsion. Dental implant therapy must include rational consideration of these phenomena.

The recognition of alveolar resorption is longstanding. This process for the edentulous patient has been characterized as an inevitable and progressive process that occurred rapidly following tooth extraction. Remarkable changes in the maxillary alveolar ridges following the removal of teeth have been reported.

During the past decade, renewed interest in this phenomenon has surfaced in the context of single missing teeth and the residual alveolar ridge. It has been observed that the maxillary alveolar ridge width diminishes approximately 50% following tooth extraction.(2) It has also been demonstrated that alveolar bone resorption occurs following tooth extraction and implant placement in premolar regions with marked loss of horizontal and vertical buccal architecture.(3)

Some clinical observations suggest that buccal bone resorption varies in magnitude among individuals and from site to site. Factors implicated in this variation include the presence and absence of existing infection, flap versus flapless extraction and implant placement, the extent of trauma during extraction and the thickness of the buccal plate of bone prior to tooth extraction. The width of the buccal plate of bone may be an important determinant of bone morphologic changes following extraction.(4)

The marked alterations after tooth extraction appear to be attributable to the loss of periodontal ligament and the consecutive trauma in particular at the buccal bone plate . Thus, it can be assumed that root retention may have an influence on the occurring resorption process.(5)

The loss of a tooth triggers a remodeling reaction as part of the healing process, involving various degrees of alveolar bone resorption, especially affecting the buccal lamella: The bundle bone is primarily vascularized by the periodontal membrane of the tooth. Therefore, this part of the alveolar bone is compromised by the extraction, to such an extent that the buccal lamella is insufficiently nourished, leading to its total or partial resorption.(5)

With the root submergence technique (RST), submucosal root retention can virtually eliminate bone resorption. Based on this concept, the retention and stabilization of the coronal and buccal bundle bone and the retention of the periodontal membrane by retaining a coronal tooth fragment (so-called "socket shield"), including adequate blood supply, can be expected.(6)

Introduction

Dental implants are frequently used to replace missing anterior teeth, teeth loss due to trauma, or teeth removed due to unfavorable restorative conditions. The process of tooth replacement by means of a dental implant and a crown is diverse and it relies on a complex array of clinical and pragmatic factors. Implants may be placed into extraction sockets immediately or at some period of time following extraction and wound healing. Following implant placement, provisionalization or direct occlusal loading may be generated immediately or after the process of osseointegration has been completed.

Both submerged (two-stage) and non-submerged (one-stage) approaches may be utilized. All these methods include tooth extraction followed by implant placement and loading at different times. At present, clinical data indicates implant survival is possible following all of these routes of treatment.

Beyond measurement of implant survival, there is little data concerning the fate of the buccal plate after implant placement in sites where teeth have been recently removed. The concern levied here is for architectural changes in the alveolar bone following extraction and subsequent to implant placement.

Unanticipated and excessive tissue changes can result in unacceptable esthetic deficits that range from soft tissue asymmetry to facial tissue discoloration to marked tissue dehiscence and abutment or implant exposure .(1)

Clinicians must realize that alveolar resorption is a consequence of tooth extraction or avulsion. Dental implant therapy must include rational consideration of these phenomena.

The recognition of alveolar resorption is longstanding. This process for the edentulous patient has been characterized as an inevitable and progressive process that occurred rapidly following tooth extraction. Remarkable changes in the maxillary alveolar ridges following the removal of teeth have been reported.

During the past decade, renewed interest in this phenomenon has surfaced in the context of single missing teeth and the residual alveolar ridge. It has been observed that the maxillary alveolar ridge width diminishes approximately 50% following tooth extraction.(2) It has also been demonstrated that alveolar bone