

Ain Shams University Faculty of Science Department of Entomology

Evaluation of Chemical Control Measures Against Sand Flies And Its Impact Upon Leishmania Transmission In Some Areas Of Libya

A Thesis Submitted For the Award of the Degree of Doctor of Philosophy of Science In Entomology

By

Mostafa Ramadhan Esboee Dokhan

M.Sc. - Entomology

Department of Entomology Faculty of Science Ain Shams University Cairo, Egypt 2015

Ain Shams University Faculty of Science Department of Entomology

Evaluation of Chemical Control Measures Against Sand Flies And Its Impact Upon Leishmania Transmission In Some Areas Of Libya

A Thesis Submitted For the Award of the Degree of Doctor of Philosophy of Science In Entomology By

Mostafa Ramadhan Esboee Dokhan

M.Sc. - Entomology

Supervised by

Prof. Mohamed Amin Kenawy

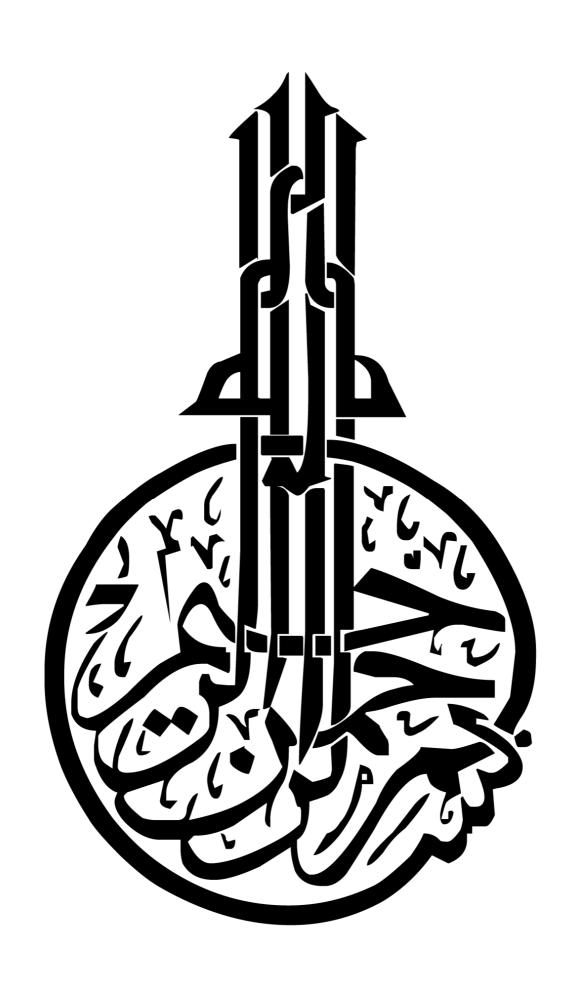
Professor of Medical Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt

Prof. Badereddin Bashir Annajar

Professor of Parasitology and Medical Entomology, Public Health Department, Faculty of Medical Technology, University of Tripoli, Tripoli, Libya

Dr. Shabaan Said El-Hosary

Researcher, Research and Training Center on Vectors of Diseases RTC, Ain Shams University, Cairo, Egypt


Dr. Said Abdallah Doha

Researcher, Research and Training Center on Vectors of Diseases RTC, Ain Shams University, Cairo, Egypt

Dr. Taher Ahmed Shaibi

Assistant Professor of Zoology, Zoology Department, Faculty of Science, University of Tripoli, Tripoli, Libya

Department of Entomology Faculty of Science Ain Shams University Cairo, Egypt 2015

Thesis Examination Committee

Name	Title	Signature
Dr. Nawal M. Zohdi	Prof. of Entomology, Cairo	
	University	
Dr. Salwa S., Rashid	Prof. of Medical Entomology,	
	Zagazig University	
Dr. Mohamed A. Kenawy	Prof. of Medical Entomology,	
	Ain Shams University	

Board of Supervision

Prof. Mohamed Amin Kenawy

Professor of Medical Entomology, Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

Prof. Badereddin Bashir Annajar

Professor of Parasitology and Medical Entomology, Head of Public Health Department, faculty of Medical Technology, University of Tripoli and Director of National Center of Disease Control, Ministry of Health, Tripoli, Libya.

Dr. Said Abdallah Doha

Researcher, Research and Training Centre on Vectors of Disease (RTC), Ain Shams University, Cairo, Egypt.

Dr. Shabaan Said El-Hosary

Researcher, Research and Training Centre on Vectors of Disease (RTC), Ain Shams University, Cairo, Egypt.

Dr. Taher Ahmed Shaibi

Assistant Professor of Zoology, Zoology Department, faculty of Science, University of Tripoli and National Center of Disease Control, Ministry of Health, Tripoli, Libya.

Biography

Name: Mostafa Ramadhan Esboee Dokhan

Date and Place

of birth: April 11, 1978, ALZawiyah, Libya.

Degrees award: B. Sc. (Zoology), 2000. Faculty of Science,

AL Zawiyah University, Libya.

M. Sc. (Biology), 2008. Faculty of Science, AL Zawiyah

University, Libya.

M. Sc. (Entomology), 2010. Master's degree equation from

Supreme Council of Universities-Egypt.

Occupation: Assistant lecturer, Zoology Department, Faculty of Science,

AL Zawiyah University and Head of Leishmania Control

Unit, National Center of Disease Control, Ministry of

Health, Tripoli, Libya

Date of registration

for the Ph. D. degree: May 5, 2012

Dedication

To my parents, the ones who can never ever be thanked enough for the overwhelming love and care they bestow upon me, and who have supported me financially as well as morally and without their guidance it was impossible for me to complete my higher education.

To my wife, who has been struggling with me, hand by hand, to secure and shape brighter future.

To 'the beats of my heart,' my children, Abd Alrahim and Aya, who are the only source of inspiration to me, their love and innocent smiles that made the hardship of this task bearable.

To my brothers, sisters and the entire family.

Acknowledgement

First of all, all praise and thanks are due to the Almighty *Allah* who always guides me to the right path and has helped me to complete this thesis.

I wish to express my deepest thanks and gratitude to *Dr. Mohamed a. Kenawy*, Prof. of Medical Entomology, Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt for suggesting the topic of this Thesis, his advice, kind encouragement, constructive criticism and for reviewing the manuscript.

I would like to express my deepest gratitude to *Prof. Badereddin B. Annajar*, Head of the Public Health Department, Faculty of Medical Technology, University of Tripoli and Director of National Center of Disease Control, Ministry of Health, Tripoli, Libya, for sharing in suggesting the research topic, his endless help, offering facilities, serious supervision of the work and for his valuable criticism and advice that made this study possible.

I would like to express my deepest gratitude to *Dr. Said a. Doha* and *Dr. Shabaan S. El-Hosary*, Research and Training Centre on Vectors of Disease, Ain Shams University, Cairo, Egypt and to *Dr. Jaher a. Shaibi*, Zoology Department, faculty of Science, University of Tripoli and National Center of Disease Control, Ministry of Health, Tripoli, Libya for their continuous help, encouragement and direct guidance of the work.

I would like to thank the technical staff of the National Programme for Leishmaniasis Control, the National Centre for Disease Control, Tripoli, Libya specially Anwar Abu Bakr Mantaser, Saleh Abdul Samad al-Shibli, Ahmad Osman Mrsukh, Mohammed Yousef Shaaban, Ali Gaddafi Rifai, Nur Addin Rashid and Walid Al-Saadawi for assisting in field studies, and to the rest of the workers in the National Centre for Disease Control for their support and encouragement during this study.

Last but not least, I expand my thanks to the staff members of the Entomology Department, Faculty of Science, Ain Shams University, , Cairo, Egypt specially *Prof. Adel K. El Said*, Head of the Department, to *Prof. Magda H. Radi*, ex-Head of the Department, to *Mrs. Sawsan Moustafa* and *Mrs. Fatma Abdel Moneam* for their help and support.

Contents

CONTENTS

		Pa
LIST OF T	ABLES	ii
LIST OF F	IGURES	,
LIST OF A	BBREVIATIONS	V
ABSTRAC'	Т	vi
I. INTROD	UCTION	1
I.II. LITERA	ATURE REVIEW	4
A.	. TAXONOMIC POSITION OF SAND FLIES	4
В.	GENERAL ECOLOGY AND HABITS OF SAND FLIES	4
	a. Geographical Distribution	4
	b. Resting Sites and Breeding Places	5
	c. Flight Range	5
	d. Feeding Behavior and Host Preference	(
	e. Seasonal Changes and Population Dynamics	7
	f. Effect of Temperature and Humidity on Sand fly Longevity	7
C.	SAND FLIES IN LIBYA	7
	a. Species Composition	7
	b. Geographic Distribution	8
	c. Relative Abundance	1
	d. Seasonal Abundance	1
	e. Natural Infection of Sand flyflies with Leishmania Parasites	1
D.	. LEISHMANIASIS IN THE OLD WORLD	1
E.	LEISHMANIASIS IN LIBYA	1
	a. Cutaneous Leishmaniasis	1
	b. Visceral Leishmaniasis	1
F.	SAND FLY AND LEISHMANIASIS CONTROL	1
III. MATE	RIALS AND METHODS	2
A.	. THE STUDY AREA	2
В.	SAND FLY SAMPLING SITES	2
C.	SAND FLY COLLECTION	2
D.	. SAND FLY PROCESSING AND IDENTIFICATION	2
E.	SAND FLY CONTROL PROGRAM	2
F.	LEISHMANIA CASES	3
G.	. THE STUDY TOPICS	3
H	. STATISTICAL ANALYSIS	3
IV RESIII.	TS	3

Contents

ECOLOGICAL STUDIES ON SAND FLIES	
A. SPECIES COMPOSITION	
B. RELATIVE ABUNDANC	
C. COMPARISON OF FLY DENSITIES IN THE TWO VILLAGES	
D. SEX RATIOS	38
E. RELATION OF FLY DENSITY TO THE WEATHER CONDITIONS	40
F. MONTHLY ABUNDANC OF REPORTED SAND FLIES	42
a. P. papatasi	42
b. P. sergenti	43
c. P. alexandri	44
d. P. chabaudi	45
e. P. longicuspis	46
f. P. langeroni	47
g. S. minuta	48
h. S. antennata	49
i. S. fallax	50
j. All fly species	52
PHLEBOTOMUS PAPATASI ABUNDANCE IN RELATION TO THE	53
REPORTED CUTANEOUS LEISHMANIASIS CASES	
A. LEISHMANIA CASES	53
B. P. PAPATASI	53
SAND FLY CONTROL	56
A. RELATIVE ABUNDANCE OF SAND FLIES DURING THE THREE	
ULV SPRAYING CYCLES	56
B. EFFECT OF ULV SPRAYING ON THE ABUNDANCE OF THE	
DIFFERENT SAND FLY SPECIES	57
a. P. papatasi	57
b. P. sergenti	58
c. P. alexandri	59
d. P. chabaudi	60
e. P. longicuspis	61
f. P. langeroni	62
g. S. minuta	63
h. S. antennata	64
i. S. fallax	65
j. All fly species	66
C. EFFECT OF ULV SPRAYING ON SEX RATIOS OF SAND FLIES	67
D. IMPACT OF ULV SPRAYING UPON FLIES FLIES LEISHMANIA	
TRANSMISSION	68

Contents

V. DISCUSSION
I. CONCLUSION
/II. SUMMARY
V. DISCUSSION
X. ARABIC SUMMARY

LIST OF TABLES

		Page
		ruge
Table 1:	Reported sand fly species in Libya	8
Table 2:	Geographic distribution of sand fly species in Libya	9
Table 3:	Reported CL cases in Libya from 2004 to 2013	17
Table 4:	Reported VL cases in Libya	17
Table 5:	Quantity of insecticide used and treated areas in RW (2013)	31
Table 6:	Species composition and relative abundance of sand flies collected	
	in RE	34
Table 7:	Species composition and relative abundance of sand flies collected	
	in RW	34
Table 8:	Comparison of fly densities (Fly / trap) reported monthly	
	in RE and RW	37
Table 9:	Sex ratios (males to females) of sand flies collected in RE	39
Table 10:	Sex ratios (males to females) of sand flies collected in RW	40
Table 11:	Monthly means of all fly density and weather conditions	41
Table 12:	Multiple regression analysis for the relation of temperature, RH	
	and wind velocity with the compiled density of all sand fly species	41
Table 13:	Monthly abundance of <i>P. papatasi</i>	43
Table 14:	Monthly abundance of <i>P. sergenti</i>	44
Table 15:	Monthly abundance of <i>P. alexandri</i>	45
Table 16:	Monthly abundance of <i>P. chabaudi</i>	46
Table 17:	Monthly abundance of <i>P. longicuspis</i>	47
Table 18:	Monthly abundance of <i>P. langeroni</i>	48
Table 19:	Monthly abundance of <i>S. minuta</i>	49
Table 20:	Monthly abundance of <i>S. antennata</i>	50
Table 21:	Monthly abundance of <i>S. fallax</i>	51
Table 22:	Monthly abundance of all sand fly species	52
Table 23:	Reported CL cases in RE and RW during 2012 and 2013	54
Table 24:	Monthly abundance of <i>P. papatasi</i> (fly / trap)	54
Table 25:	Relative abundance of sand flies collected in RW and RE	
	during the three ULV spraying cycles (April, June and September	5.6
Table 26.	2013) Mean density of P. nanatasi (fly/collection site) pre, and post	56
Table 26:	Mean density of <i>P. papatasi</i> (fly/collection site) pre- and post-	50
Table 27.	ULV spraying Mean density of <i>P. sergenti</i> (fly/collection site) pre- and post-	58
Table 27:	ULV spraying	59
	OL v spraying	JJ

List of Tables

Table 28:	Mean density of P. alexandri (fly/collection site) pre- and post-	
	ULV spraying	60
Table 29:	Mean density of <i>P. chabaudi</i> (fly/collection site) pre- and post-	
	ULV spraying	61
Table 30:	Mean density of <i>P. longicuspis</i> (fly/collection site) pre- and post-	
	ULV spraying	62
Table 31:	Mean density of <i>P. langeroni</i> (fly/collection site) pre- and post-	
	ULV spraying	63
Table 32:	Mean density of <i>S. minuta</i> (fly/collection site) pre- and post- ULV	
	spraying	64
Table 33:	Mean density of <i>S. antennata</i> (fly/collection site) pre- and post-	
	ULV spraying	65
Table 34:	Mean density of <i>S. fallax</i> (fly/collection site) pre- and post- ULV	
	spraying	66
Table 35:	Mean density of all reported sand fly species (fly/collection site)	
	pre- and post- ULV spraying	67
Table 36:	Sex ratios (male: female) of sand flies pre- and post- ULV	
	spraying in RW	68
Table 37:	Reported CL cases in RW from January to December (2012 and	68
	2013)	
	2010)	

LIST OF FIGURES

		Page
		8
Figure 1:	Adult of <i>Phlebotomus</i> sand fly	4
Figure 2:	Distribution of cutaneous and visceral leishmaniasis in Libya	16
Figure 3:	Location of Libya within Africa	23
Figure 4:	Location of Al Rabta East (RE) and Al Rabta West (RW), the	23
rigure 4.	study areas in the NW region of Libya	23
Figure 5:	Al Rabta East (RE) area in the NW of Libya. Part of the	23
	abandoned old village with some modern houses	24
Figure 6:	Al Rabta Western (RW) area in the NW of Libya. Part of the	
1180110 00	abandoned old village with some modern houses	24
Figure 7:	Rodent burrows harboring several rodent species mainly	
	Psammomys obesus	25
Figure 8:	Satellite maps showing the Sand fly sampling sites in the RE	
8	(above) and RW (below)	26
Figure 9:	Hanging of light trap in an outdoor site for sand fly collection	27
Figure 10:	Processing and identification of sand flies in the laboratory	28
Figure 11:	The structural and empirical formulae of cypermethrin	29
Figure 12:	The motorized ULV sprayer mounted on a vehicle used for	
C	insecticide application	30
Figure 13:	ULV Spraying of walls, caves and other sites with cypermethrin	31
Figure 14:	Relative abundance of sand flies collected in RE	35
Figure 15:	Relative abundance of sand flies collected in RW	36
Figure 16:	Comparative fly densities in RE and RW during 2012 (1), 2013	
	(2) and the two years together (3)	38
Figure 17:	Monthly means of temperature, RH and wind velocity (above)	
	and compiled fly density of all sand fly species (below)	42
Figure 18:	Monthly abundance of P. papatasi in RE and RW	43
Figure 19:	Monthly abundance of P. sergenti in RE and RW	44
Figure 20:	Monthly abundance of <i>P. alexandri</i> in RE and RW	45
Figure 21:	Monthly abundance of P. chabaudi in RE and RW	46
Figure 22:	Monthly abundance of <i>P. longicuspis</i> in RE and RW	47
Figure 23:	Monthly abundance of <i>P. langeroni</i> in RE and RW	48
Figure 24:	Monthly abundance of <i>S. minuta</i> in RE and RW	49
Figure 25:	Monthly abundance of S. minutain RE and RW	50
Figure 26:	Monthly abundance of <i>S. fallax</i> in RE and RW	51

List of Figures

Figure 27:	Monthly abundance of all sand fly species in RE and RW	52
Figure 28:	Reported CL cases (above) and monthly densities of <i>P. papatasi</i>	
	(below) in RE and RW	55
Figure 29:	Two CL cases	55
Figure 30:	Relative abundance of sand flies collected in RW and RE during	
	the three ULV spraying cycles (April, June and September 2013)	57
Figure 31:	Total density of <i>P. papatasi</i> pre- and post- ULV spraying	58
Figure 32:	Total density of <i>P. sergenti</i> pre- and post- ULV spraying	59
Figure 33:	Total density of <i>P. alexandri</i> pre- and post- ULV spraying	60
Figure 34:	Total density of <i>P. chabaudi</i> pre- and post- ULV spraying	61
Figure 35:	Total density of <i>P. longicuspis</i> pre- and post- ULV spraying	62
Figure 36:	Total density of <i>P. langeroni</i> pre- and post- ULV spraying	63
Figure 37:	Total density of S. minuta pre- and post- ULV spraying	64
Figure 38:	Total density of S. antennata pre- and post- ULV spraying	65
Figure 39:	Total density of S. fallax pre- and post- ULV spraying	66
Figure 40:	Total density of all reported sand fly species pre- and post- ULV	
	spraying	67

LIST OF ABBREVIATIONS

ACL: Anthroponotic cutaneous leishmaniasis

ANOVA: Analysis of Variance

ATSB: Attractive Toxic`Sugar Baits

AVL: Anthroponotic visceral leishmaniasis

CDC: Center of Disease Control
CL: Cutaneous leishmaniasis

CSR: Communicable Disease Surveillance and Response

DNA: Deoxyribo Nucleic Acid

EMR: Eastern Mediterranean Region
EC: Emulcifiable Concentrate

F.: Family

IRS: Indoor Residual sprayITNs: Insecticide Treated Bednets

L.: Leishmania

MCL: Mucocutaneous leishmaniasis

NE: North-East NW: North-West

O.: Order

P.: Phlebotomus

PCD: Passive Case Detection
PCR: Polymerase Chain Reaction

RE: Al Rabta East
RH: Relative Humidity
RW: Al Rabta West

RTC: Research and Training Center on Vectors of Diseases

S.: Sergentomyia

SSP: Smith's Statistical Package TDR: Tropical Diseases Research

Temp.: Temperature

ULV: Ultra Low VolumeVL: Visceral leishmaniasisWHO: World Health Organization

ZCL: Zoonotic cutaneous leishmaniasis ZVL: Zoonotic visceral leishmaniasis