Relationship between left ventricular torsion early after myocardial infarction and remodeling in patients with ST segment elevation myocardial infarction treated by percutaneous coronary intervention

Thesis

Submitted for Partial Fulfillment of MD Degree in Cardiology

By

Amr Mansour Mohamed Zaky

M.B., B.CH, MSC Ain Shams University

Under supervision of

Prof.\ Mohamed Ayman Mostafa A.Saleh

Professor of Cardiology
Faculty of Medicine - Ain Shams University

Dr\ Hany Mohamed Ahmed Awad Allah

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr\Mohamed Abd el Kader Abd el Reheem

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2015

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.**\ Mohamed Ayman Mostafa A.Saleh, Professor of Cardiology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr\ Hamy Mohamed**Ahmed Awad Allah, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr* Mohamed Abd el Kader Abd el Reheem ,

Lecturer of Cardiology, Faculty of Medicine, Ain Shams

University, for her kindness, supervision and cooperation
in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Amr Mansour Mohamed Zaky

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vii
Introduction	1
Aim of the Work	3
Review of Literature	
 Cardiac architecture and myocardial mechanics 	s4
 Role of Echocardiography in Post Myocardia Infarction Risk Stratification and cardia remodeling 	ıc
Speckle Tracking Echocardiography (STE)	
Patients and Methods	
Results	65
Discussion	100
Summary	111
Conclusion	115
Recommendation	116
References	117
Arabic Summary	

List of Tables

Table No.	Title F	Page No.
Table (1):	Scoring system for grading wall motion	n 21
Table (2):	Speckle-Tracking Echocardiograph Terminology	
Table (3):	Normal values for cardiac mechaniparameters evaluated by specktracking	cle
Table (4):	Showing the Demographic a anthropometric measures of the studi patients.	ed
Table (5):	Risk factors among the studied patien	ts 67
Table (6):	Showing the site of myocard infarction among the study patients	ial
Table (7):	Clinical data during admission of t study patients	
Table (8):	Showing the time of enzymes peaking components of delay in STEMI patient catheter interval, and angiograph	ts, nic
	parameters among the study patients	
Table (9):	Showing the grade of diasto dysfunction in the ind echocardiography in the study patient	ex
Table (10):	Showing the various echocardiograph parameters of the ind echocardiography among the stupatients.	nic ex dy
Table (11):	Showing the type of valvular lesions the index echocardiography in the stupatients.	in dy

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (12):	Showing the percentages of diffe left ventricular volume changes the index echocardiography in studied patients	from the	75
Table (13):	Showing the demographic anthropometric measurements and the different Groups	nong	76
Table (14):	Showing the prevalence of the factors among the different st groups	tudy	77
Table (15):	Showing the clinical data and car enzymes elevation among the diffe study groups.	diac rent	
Table (16):	Showing the clinical data, the time enzymes peaking, components of din STEMI patients, catheter interand angiographic parameters and the different study groups patients	ne of lelay rval, nong	
Table (17):	Showing the index echocardiogradata in the different study groups	phic	
Table (18):	Showing the difference of the degree torsion in the index echocardiogramong the study groups	aphy	84
Table (19):	Showing the dimension, volumes, LV EF by biplane Simpson's methothe index echocardiography among study groups.	and od in the	
Table (20):	Showing the correlation between reduction in the Lv torsion and the persymatic elevation	the	85

List of Tables (Cont...)

Table No.	Title	Page No.
Table (21):	Showing the correlation between the torsion and the SWMA index and LV EF by Biplane's Simpson's met in the index echocardiography	the thod
Table (22):	Logistic regression analysis for tor in prediction of remodeling	
Table (23):	Showing the demograp anthropometric and clinical data in mortality and non-mortality groups.	the
Table (24):	Showing the risk factors among mortality and non-mortality groups.	
Table (25):	Showing the site of MI, clinical d catheter data among the mortality non-mortality groups	and
Table (26):	Showing the echocardiographic of among the mortality and non-mortagroups	ality
Table (27):	Showing the demograp anthropometric, clinical data in MACE and non-MACE groups	ohic, the
Table (28):	Showing the ECG site, clinical data catheter data in the MACE and MACE groups	and non-
Table (29):	The echocardiography data in MACE and non-MACE groups	the

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Illustrated historical timetable of the contributions in understanding ventricular myocardial architecture	the
Fig. (2):	Myocardial fiber organization	10
Fig. (3):	Unscrolling of Torrent-Guasp's myocaband model, whereby his unwrapped contains an oblique centerfold separates the basal and apical loops	heart that
Fig. (4):	Schematic drawing of fiber orientati	on in
Fig. (5):	A transmitted wave interacts with acoustic interface in a predictable some of the ultrasound energy is reflect the interface, and some is transmitted through the interface	way, ted at nitted
Fig. (6):	Regions of interest (kernels) represent the end-diastole (ED) and end-systole (
Fig. (7):	A: Speckle-tracking echocardiogranalysis of myocardial deformation shomeasurements of longitudinal strain (A	owing
Fig. (8):	Graphic depiction of left ventrational dynamics showing rotation cardiac base (left) and apex (right)	of the
Fig. (9):	Showing the LV rotational mech curves with preserved torsion v (Speckle-tracking analysis shows no peak LV basal (purple line) and a (green line) rotations and normal peat torsion, 18.4° white line)	values ormal apical ak LV

List of Figures (Cont...)

Fig. No.	Title Page	No.
Fig. (10):	Showing the LV rotational mechanics curves with impaired torsion values (Speckle-tracking analysis shows impaired peak LV basal (purple line) and apical (green line) rotations and reduced peak LV torsion, 6.8°; white line)	61
Fig. (11):	Showing the gender distribution among the patients.	
Fig. (12):	Showing the prevalence of risk factors among the patients	67
Fig. (13):	Showing the admission Killip's classification of the study patients.	
Fig. (14):	Showing the grade of diastolic dysfunction in the indexed echocardiography.	72
Fig. (15):	Showing the prevalence of valvular lesions in the indexed echocardiography among the study patients	74
Fig. (16):	Showing the changes in ventricular volumes from the indexed echocardiography	
Fig. (17):	Showing the admission Killip's classification in the different study groups	79
Fig. (18):	Showing the delay intervals and catheter interval among the different study groups	81
Fig. (19):	Showing the grade of myocardial blush among the different study groups	81
Fig. (20):	Showing the TIMI flow at the end of the procedure among the different study groups.	82
Fig. (21):	Showing the degree of torsion in the index echocardiography among the different groups in the study.	

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Fig. (22):	Showing the LVEF by biplane Simple method. LA volume and LA volume income the index echocardiography in the diffestudy groups.	dex in ferent	86
Fig. (23):	Showing the correlation between th torsion and the peak CK total levels lower the torsion, the higher the enzy elevation)	s (the matic	87
Fig. (24):	Showing the correlation between the torsion and the peak CK MB level (the the torsion the higher the enzy elevation)	lower matic	87
Fig. (25):	Showing the correlation between the torsion and the SWMA index (the lower torsion, the higher the SWMA index)	er the	88
Fig. (26):	Showing the relation between the torsion and the LV EF by Bip Simpson's method (the lower the to the lower the LVEF by the mo Simpson's method).	lane's rsion, dified	88
Fig. (27):	Showing the Receiver-operator characteristic curve, testing the accurate peak LV torsion to predict the remodeling at 6 months follow up	acy of	89
Fig. (28):	Showing the Receiver-opera characteristic curve, testing the accurate peak LV torsion to predict the LV representation of the control of the	acy of everse	90

List of Abbreviations

Abb.	Full term
2D	: Two dimensional
	: Arterial blood pressure
	: Angiotensin converting enzyme inhibitors
	: Acute myocardial infarction
	: Aortic valve closure
BB	
	: Body mass index
BP	·
	: Coronary artery disease
CK	
CK-MB	: Creatine Kinase-myocardial band
CRT	: Cardiac re-synchronization therapy
DALYs	: Disability-adjusted life years
DD	: Diastolic dysfunction
DSE	: Dobutamine stress echocardiography
ECG	: Electrocardiogram
ECM	: Extra-cellular matrix
EDD	: End diastole dimension
EDV	: End diastolic volume
EDVI	: End diastolic volume index
EF	: Ejection fraction
ESD	: End systole dimension
ESV	: End systolic volume
ESVI	: End systolic volume index
LA	: Left atrium
LAD	: Left anterior descending artery
LAVI	: Left atrial volume index
LCX	: Left circumflex artery
LV	: Left ventricle

List of Abbreviations (cont...)

Abb. Full term	
LVEDD: Left ventricular end diastolic	diameter
LVEF: Left ventricle ejection fraction	n
LVESD: Left ventricle end systolic dia	ımeters
MACE: Major adverse cardiac events	
MBG: Myocardial blush grade	
MI: Myocardial infarction	
MO: Microvascular obstruction	
MR: Mitral regurgitation	
MRI: Magnetic resonance imaging	
NSTEMI: Non ST segment elevatinfarction	tion myocardial
PCI: Per cutaneous coronary inter	vention
PPCI: Primary per cutaneous coron	
PTCA: Percutaneous trans-lum	
angioplasty	iliai colollary
RCA: Right coronary artery	
ROC: Receiver operating characters	istic curve
ROIRegion of interest	
RV: Right ventricle	
STE Speckle tracking echocardiog	raphy
STEMI: ST segment elevation myocar	dial infarction
TIMI: Thrombolysis in myocardial i	nfarction
WMSI: Wall motion score index	

INTRODUCTION

After successful reperfusion therapy in the hyper-acute stage of acute myocardial infarction (MI), dysfunctional myocardial segments subtended by the infarct-related artery can follow two different natural courses: functional recovery or irreversible remodeling. Predicting functional recovery or remodeling remains an elusive goal of echocardiography (Soloman et al., 2001).

The clinical importance of LV (left ventricular) remodeling was emphasized by White et al., who demonstrated that patients who died during follow-up after myocardial infarction had significantly larger LV volumes and lower left ventricular ejection fraction (LVEF) than survivors. As a consequence, early identification of patients with LV remodeling after myocardial infarction is of vital importance (White et al., 1987).

Several variables have been identified to predict an increase in LV volume and a decrease in LV ejection fraction after an acute MI. These include infarct size (Guardon et al., 1993, Chareon Thaitwaee et al., 1995), anterior location (Warren et al., 1988), cardiac enzyme index (Rao et al., 1998), trans-mural extent of infarction (Bolognese et al., 1997), patency of infarct-related artery (Jermey et al., 1987), end-systolic volume (ESV) (White et al., 1987), microvascular obstruction (Wu et al., 1998) and mitral deceleration time

(Temporelli et al., 2004). However, these are interrelated risk factors and each measure reflects a different aspect of the disease state and none can currently be considered as definitive (Zhang et al., 2005).

The systolic twisting of the LV along its longitudinal axis resulting from opposite rotation of the LV apex compared with the base is emerging as an important sensitive parameter of LV systolic function (Sengupta et al., 2008).

Recently, echocardiographic assessment of LV torsion mechanics based on 2 D speckle-tracking has been introduced and validated (Notomi et al., 2005).

In the clinical setting, however, not much data on changes in LV torsion after AMI are available and no specific data exist concerning the role of LV torsion in predicting postinfarction LV remodeling.

AIM OF THE WORK

o assess the relationship between left ventricular torsion measured by 2 D speckle tracking early after myocardial infarction and remodeling in patient with ST elevation myocardial infarction treated by primary PCI (PPCI).

Chapter One

CARDIAC ARCHITECTURE AND MYOCARDIAL MECHANICS

Cardiac architecture:

The normal heart presents an architectural design that allows the contractile apparatus to empty and fill with optimal mechanical efficiency, determined by integration of vectors of force generated by sarcomeres that can only shorten by active contraction (*Gerald et al.*, 2008).

Keith, in 1918, presented a currently unfulfilled challenge by stating, "We cannot claim to have mastered the mechanism of the human heart until we have a fundamental explanation of its architecture" (*Gerald et al.*, 2008).

Ever since Danish anatomist, Nicolaus Steno (1638—1686), settled the muscular nature of the heart, in 1663, the architecture of the ventricular myocardium became a fascination for the generations of investigators (*Mladen et al.*, 2006).

In addition to many other features, almost all historical predecessors in the field, from Richard Lower (1631—1691) onward, have recognized helical, trans-mural, overlapping pattern of the ventricular myocardial fibers. Unresolved problem was to reveal unique, rule-based assignment which, as

4