

# Ultrasound Guided Neuraxial Block in Pediatric Patients

**Essay**Submitted for partial fulfillment of Master degree in

By
Haitham Mamdouh Omara Mustafa
M.B.B.Ch, Ain Shams University

Anesthesia

Under supervision of

### Prof. Dr. Glal Adel El-Kady

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain-Shams University

#### Prof. Dr. Ahmed Nagah El-Shaer

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain-Shams University

#### Dr. Mustafa Mansour Houssein

Lecturer in Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain-Shams University

> Faculty of Medicine Ain Shams University 2015



سورة البقرة الآية: ٣٢



## **Acknowledgement**

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Glal Adel El-Kady**, Professor of Anesthesia, Intensive Care and Pain Management, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Ahmed Nagah El-Shaer** Professor of Anesthesia, Intensive Care and Pain Management, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

A special ward of gratitude must be directed to **Dr**. **Mustafa Mansour Houssein**, Lecturer in Anesthesia, Intensive Care and Pain Management who offered his great help and his professional experience for completion of this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.



### **Contents**

| List of Abbreviations                                                                   | i   |
|-----------------------------------------------------------------------------------------|-----|
| List of Tables                                                                          | ii  |
| List of Figures                                                                         | iii |
| Introduction and Aim of the Work                                                        | 1   |
| Chapter (1): Anatomy of the vertebral column and the spinal cord                        | 5   |
| Chapter (2):                                                                            |     |
| Physiology of Pain                                                                      | 19  |
| Chapter (3): Basics of ultrasound                                                       | 39  |
| Chapter (4): Perioperative management for pediatric neuroaxial block.                   | 56  |
| Chapter (5): Techniques for ultrasound guided neuroaxial block. In pediatrics patients. | 71  |
| Chapter (6):                                                                            |     |
| Advantages and disadvantages of US guided technique versus conventional technique.      | 82  |
| SummaryReferences                                                                       | 88  |
| Arabic Summary                                                                          | 90  |

### **List of Abbreviations**

ALL : Anterior longitudinal ligament

CSF : Cerebrospinal fluid

DRG : Dorsal root ganglion

ECG : Electrocardiographic

IASP : International Association for the Study of

Pain

LOR : Loss of resistance

NMDA : N-methyl-Daspartate

PCEA : Patient-controlled epidural analgesia

PLL : Posterior longitudinal ligament

PRA : Pediatric regional anesthesia

PRA : Pediatric regional anesthesia

PRF : Pulse repetition frequency

### List of tables

| Table | Title                                         | Page |
|-------|-----------------------------------------------|------|
| 1     | Anatomic differences between pediatric        | 18   |
|       | and adult patients                            |      |
| 2     | Acoustic impedances of different body tissues | 45   |
|       | and organs                                    |      |
| 3     | Basic Safety Recommendations for Any Type     | 60   |
|       | of Regional or Local Anesthesia Aiming to     |      |
|       | Avoid Irrelevant Medicolegal Claims           |      |
| 4     | Usual and Maximum Recommended Doses of        | 64   |
|       | Local Anesthetic for Conduction Nerve Blocks  |      |
|       | (Excluding Bier Blocks and Spinal Anesthesia) |      |
| 5     | Usual Doses and Infusion Regimens for         | 64   |
|       | Epidural Anesthesia in Pediatric Patients     |      |

# **List of Figures**

| Fig. | Title                                     | Page |
|------|-------------------------------------------|------|
| 1    | Comparisons between levels of the         | 6    |
|      | conusmedullaris and the dural sac in the  |      |
|      | infant versus the older child or adult    |      |
| 2    | Vertebral column curvatures               | 8    |
| 3    | Intervertebral disc                       | 10   |
| 4    | Facet joint                               | 11   |
| 5    | Intervertebral ligaments                  | 13   |
| 6    | Meninges                                  | 16   |
| 7    | Pain pathways                             | 22   |
| 8    | Lateral (A) and coronal (B) views of the  | 23   |
|      | brain show the location of the primary    |      |
|      | sensory cortex. Note the cortical         |      |
|      | representation of body parts, the sensory |      |
|      | homunculus (B)                            |      |
| 9    | Attenuation of ultrasound waves and its   | 41   |
|      | relationship to wave frequency. Note      |      |
|      | that higher frequency waves are more      |      |
|      | highly attenuated than lower frequency    |      |
|      | waves for a given distance                |      |
| 10   | A comparison of the resolution and        | 42   |
|      | penetration of different ultrasound       |      |
|      | transducer frequencies                    |      |
| 11   | Schematic representation of ultrasound    | 42   |
|      | pulse generation                          |      |
| 12   | Different types of ultrasound wave-       | 46   |
|      | tissue interactions                       |      |

# List of Figures (Cont.)

| Fig. | Title                                                                       | Page |
|------|-----------------------------------------------------------------------------|------|
| 13   | Refraction artifact. Diagram (a) shows how sound beam refraction results in | 48   |
|      | duplication artifact. (b) Is a transverse                                   |      |
|      | midline view of the upper abdomen                                           |      |
|      | showing duplication of the aorta (A)                                        |      |
|      | secondary to rectus muscle refraction                                       |      |
| 14   | Degrees of attenuation of ultrasound                                        | 50   |
| 1 '  | beams as a function of the wave                                             | 30   |
|      | frequency in different body tissues                                         |      |
| 15   | Sonographic image of the femoral                                            | 51   |
|      | neurovascular structures in the inguinal                                    |      |
|      | area. A hyperechoic area can be                                             |      |
|      | appreciated deep to the femoral artery                                      |      |
|      | (arrowhead). This well-known artifact                                       |      |
|      | (known as posterior acoustic                                                |      |
|      | enhancement) is typically seen deep to                                      |      |
|      | fluid -containing structures. N femoral                                     |      |
|      | nerve, A femoral artery, V femoral vein                                     |      |
| 16   | Examples of Sono Sites Transducers                                          | 52   |
| 17   | Examples of Philips Transducers                                             | 53   |
| 18   | Local anesthetic systemic toxic                                             | 66   |
|      | symptoms are represented on a scale                                         |      |
|      | corresponding to the typical plasma lidocaine concentration producing       |      |
|      | respective symptoms                                                         |      |
| 19   | Coronal view of the sacrum showing                                          | 72   |
|      | proper needle placement for                                                 |      |
|      | performance of a candal epidural block                                      |      |

# List of Figures (Cont.)

| Fig. | Title                                   | Page |
|------|-----------------------------------------|------|
| 20   | Sonoanatomy of the caudal epidural      | 74   |
|      | space at the level of the sacral hiatus |      |
|      | using a linear hockey stick probe (SLA, |      |
|      | 6-13 MHz, 25 mm footprint) placed in    |      |
|      | the transverse plane                    |      |
| 21   | Sonoanatomy of the spinal column and    | 77   |
|      | canal in transverse axis at the L3/L4   |      |
|      | level                                   |      |
| 22   | Spinal anesthesia in pediatrics         | 80   |

### Introduction

Pediatric anesthesia and pediatric regional anesthesia are intertwined. Almost all surgeries unless contradicted could be and should be supplemented with a regional block. The main objective of this review is to elaborate on the recent advances of the central neuraxial blocks, such as application of ultrasound guidance. Recent advances have brought a lot of objectivity to central neuraxial blocks, making them safer and effective. Technically, central neuraxial blocks have various approaches. These blocks can be given as single shot or as continuous techniques depending on the nature and severity of the surgical procedure (*Bosenberg*, 2012).

The benefits of pediatric regional anesthesia are many, although nerve blocks, especially at the neuraxis, can be challenging. The safety margin for needle placement is narrow within the spinal canal; the anatomical structures are tightly positioned and the epidural space can be as narrow as 2 mm for epidural blocks. Because of the large variation of each patient's body habitus due to age, it can be difficult to predict the puncture depth to reach either the epidural or intrathecal spaces (*Arthurs et al.*, 2008).

In recent years, anatomically based ultrasound is one of the most exciting advances in technology in relation to pediatric regional anesthesia. The use of ultrasound in neuraxial anesthesia in adults is somewhat limited because of the reduced visibility of the spinal canal resulting from poor ultrasound beam penetration through the ossified bony vertebral column. In theory, ultrasound could be of much greater value in the young pediatric population where there is limited ossification, thus allowing good visual resolution of the anatomy and block-related equipment or solutions (*Tsui and Suresh*, 2010).

Ultrasound scanning (US) can offer several advantages when used to guide placement of the needle for centroneuraxial blocks (CNBs). It is noninvasive, safe, simple to use, can be performed expeditiously, provides real-time images, is devoid from adverse effects, and it may be beneficial in patients with abnormal or variant spinal anatomy. When used for chronic pain interventions, US also eliminates or reduces exposure to radiation. In expert hands, the use of US for epidural needle insertion was shown to reduce the number of puncture attempts, improve the success rate of epidural access on the first attempt, reduce the need to puncture multiple levels, and improve patient comfort during

### Introduction and Aim of the Work

the procedure. These advantages led the National Institute of Clinical Excellence (NICE) in the United Kingdom to recommend the routine use of ultrasound for epidural blocks (*Grau et al.*, 2004).

### Aim of the Work

The aim of this work is to illustrate the benefits of neuro-axial block in providing peri-operative analgesia and to demonstrate the advantages of U/S guided technique for neuro-axial block versus conventional technique in pediatric age group.

Chapter One Anatomy

### **Anatomy**

#### **Introduction:**

A thorough knowledge of the regional anatomy and its specific anatomical landmarks is an essential for performing successful nerve block and it cannot be substituted by probing with a needle attached to a nerve stimulator (*Dalens and Mansour*,1994).

The anatomy described in adults is not always applicable to children as anatomical landmarks in children vary with growth. landmarks, commonly used in adults, tend to lack definition in young children partly because of poorer muscle development and patient cooperation which used to locate them and most children are under a light general anesthesia when the nerve block is being performed (*Clergue and Auoryet.*, 2002):

### **Anatomy of the vertebral column and the spinal cord:**

The spinal canal is surrounded by 3 protective sheaths. From the outside to the inside they are: dura mater, arachnoid and pia mater. The potential space between the dura and arachnoid is called subdural space. The cerebrospinal fluid

Chapter One Anatomy

(CSF) flows between the arachnoid and pia mater in the space called subarachnoid space. (Young and Young, 2007).

The spinal cord begins cranially at the foramen magnum, as a continuation of the medulla oblongata and ends caudally as the conus medullaris, at the level of the lower border of L1 in adult, and at the upper border of L3 in children (fig. 1). From this end, a prolongation of the pia mater called the filum terminale attaches the spinal cord to the coccyx. The dura ends at the level of  $S_2$  (Young and Young, 2007).

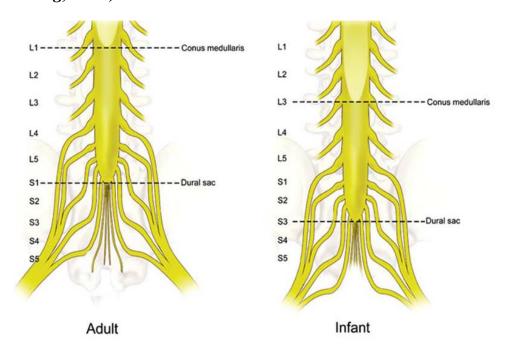



Fig. (1): Comparisons between levels of the conusmedullaris and thedural sac in the infant versus the older child or adult. (*Tames and Burstal*, 2003)