

Comparative effect of gamma and microwave irradiation on anticarcinogenic properties of red chilli in albino rats

By

Rasha Mousa Ahmad Mousa

Assistant Lecturer at Home Economic Department, Faculty of Specific Education, Assist University.

THESIS

Submitted in Partial Fulfilment of The Requirements for The Degree of Doctor of Philosophy (Nutrition and Food Science)

Supervised by

Prof. Dr. Mohamed Kamal El-Sayed Youssef

Prof. of Food Science & Technology Faculty of Agriculture, Assiut University Member of American Academy of Science

Prof. Dr. Sanaa Mohamed El-Bendary

Prof. of Nutrition Faculty of Education Ain Shams University

Dr. Nagla Taha Hefny El-Melegy

Assistant Prof. of Biochemistry Faculty of Medicine Assiut University

Dr. Khaled Mohamed Ahmed Hassanein

Lecturer of Pathology & Clinical Pathology Faculty of Veterinary Medicine Assiut University

APPROVAL SHEET

Comparative effect of gamma and microwave irradiation on anticarcinogenic properties of red chilli in albino rats

By Rasha Mousa Ahmad Mousa

Assistant Lecturer at Home Economic Department, Faculty of Specific Education, Assist University.

This thesis for Ph.D. Degree has been approved by: Prof. Dr. Mohamed K. El-Sayed Youssef

Prof. of Food Science and Technology, Faculty of Agriculture, Assiut University, Member of American Academy of Science.

Prof. Dr. Mohamed S. El-Dashlouty

Prof. of Nutrition, Faculty of Home Economics, Minufiya University

Prof. Dr. Sanaa Mohamed El-Bendary

Prof. of Nutrition, Faculty of Education, Ain Shams University.

Dr. Taha Mahmoud Abdel Rahman

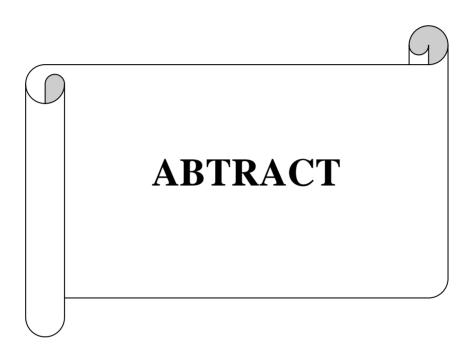
Assistant Prof. of Chemisry, Faculty of Education, Ain Shams University.

Date of examination: / /2010

ACKNOLEDGEMENT

ACKNOWLEDGEMENT

Firstly all praises are due to **ALLAH**, who blessed me with kind professors and colleagues and gave me the support to produce this work.


To my parents, my husband, my sons and all those who helped me to produce this work I owe my deep and sincere gratitude.

I would like to express my deep gratitude and sincere thanks to **Prof. Dr. Mohamed K. El-Sayed Youssef**, Professor of Food Science and Technology, Faculty of Agriculture, Assiut University, Member of American Academy of Science, for kindly suggesting the topic of this work, his keen supervision, penetrating remarks, valuable advice, unlimited help and encouragement during this study and for this indispensable efforts during writing and revising the manuscript.

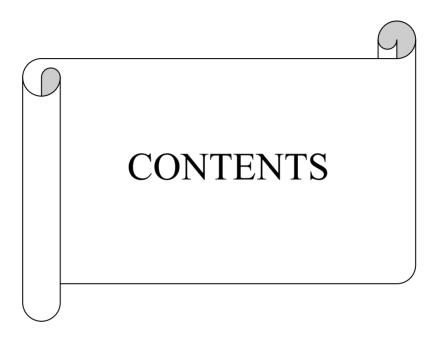
I wish to express my profound appreciation and gratitude to **Prof. Dr. Sana M. El-Bendary,** Professor of Nutrition and Food Science, Faculty of Specific Education, Ein Shams University, for her supervision, trustful help, unfailing advice and giving me the power to complete this work.

Special acknowledgement to **Dr. Nagla Taha**, Assistant Prof. of Biochemistry, Faculty of Medicine, Assiut University, for her supervision and kind help in the biochemical experiments.

My great thanks are offered to **Dr. Khaled Hasssanein**, Lecturer of Pathology and clinical pathology, Faculty of Veterinary Medicine, Assiut University for his supervision and kind help in the histopathological examination.

Comparative effect of gamma and microwave irradiation on anticarcinogenic properties of red chilli in albino rats

By Rasha Mousa Ahmad Mousa


Assistant Lecturer at Home Economic Department, Faculty of Specific Education, Assiut University. Submitted for Ph.D. degree in Home economics 'Nutrition and Food Science'

Abstract

Red chilli was irradiated with two types of radiations namely: gamma and microwave. The effects were evaluated in the changes of capsaicin concentration, and the volatile oil composition through the methods: micellar electrokinetic chromatography and gas chromatography/mass spectrophotometry (GC/MS). Gamma irradiation was used at a dose of 10 kGy. Microwave radiation was performed by continues supply of 50 W/Kg of red chilli for 15 min. Capsaicin decreased 63.17% by gamma irradiation and 21.29% by microwave treatment. Forty-four volatile oils had been identified; most of them were reported for the first time. The total amount was 898 mg/kg and decreased by irradiation: 566 mg/kg and after microwave: 524 mg/kg. Some aromatic hydrocarbons such as heptadecane, tetramethylhexadecane and octadecane were disappeared completely after both treatments. Differences were considered significant at $P \leq 0.05$. Other organic compounds like ethyl benzene persisted in the same level after treatments.

Studying the effects of gamma irradiation and microwave technology on the anticarcinogenic properties of red chilli and its possible use as a helpful agent in the treatment of cancer was biochemistry and histopathology investigated. Biochemical studies indicated that the carcinogenic effect of 1,2-dimethylhydrazine (DMH) treatment was significantly modulated on red chilli supplementation as indicated by the observed significant changes of serum levels of VEGF and TIMP-1 particularly with gamma irradiated red chilli. Gamma red chilli treated rats showed significant lower levels of VEGF and higher levels of TIMP-1 than other red chilli treated groups particularly when treatment was combined with 5-flououracil (5FU). From the histopathological results, the group of rat treated with red chilli either raw, gamma or microwave prevented the presence of malignant tumors. Gamma red chilli either alone or with 5-flourouracil were the best groups. Likewise, administration of red chilli in the diet before injection of DMH prevented the presence of malignant tumors. Therefore, the present study indicated that the administration of red chilli particularly gamma red chilli at dose of 7 mg/kg body weight could provide an effective dietary chemopreventive approach to cancer disease management and the combination of it with the conventioned anticancer treatment could be a suggested regimen for therapeutic considerartions.

<u>Key words:</u> red chilli, cancer, chemical composition, GC-MS, CE, VEGF, TIMP-1, 5-flourouracil, histopathology, colon, liver.

Contents

Title	
1. Introduction	
Aim of the work	
2. Review of Literature	10
2.1. Historical background of red chilli	10
2.2. The nutritive value of red chilli	12
2.3. The biological value and health impact of red chilli	12
2.4. Capsaicin in red chilli: carcinogen or anti- carcinogen?	14
2.5. Sanitization of red chilli	17
2.6. Proximate composition of capsaicin	18
2.7. Volatile oils in red chilli	20
2.8. Biochemical studies on red chilli	24
2.9. Histopathological studies	35
3. Materials and Methods	
3.1. Materials	49
3.1.1. Source of samples	49
3.1.2. Chemicals	49
3.1.3. Experimental animals	49
3.1.4. Materials for Rat VEGF and TIMP-1 analyses	52
3.2. Treatment of red chilli samples	54
3.3. Preparation of solutions	54

3.3.1. Solutions for Capillary Electrophoresis analysis	54
3.3.2. Solutions for Gas Chromatography/	55
Mass Spectrometry analysis	
3.3.3. Solutions for DMH and 5-FU	55
3.3.4. Blood samples	56
3.3.5. Solutions for Rat TIMP-1 analysis	56
3.3.6. Solutions for Rat VEGF analysis	58
3.4. Methods	59
3.4.1. Determination of capsaicin by CE	59
3.4.2. Determination of volatile compounds by	60
GC/MS	
3.4.3. Design of the animal experiment	61
3.4.4. Determination of Rat TIMP-1	64
3.4.5. Determination of Rat VEGF	66
3.4.6. Histopathology	68
3.5. Statistical analysis	69
4. Results and Discussion	74
4.1. Determination of capsaicin by capillary electrophoresis	74
4.1.1. Beneficial and adverse effects of capsaicin	75
4.2. Determination of volatile compounds by GC/MS	78
4.2.1. Beneficial and adverse effects of volatile compounds	80
4.3. Biochemical studies on red chilli	86

4.3.1. Results of rats Vascular Endothelial Growth Factor (VEGF) concentrations in rat serum		
4.3.2. Results of rat tissue inhibitor of metalloproteinases 1 (TIMP-1) in rat serum	93	
4.4. Histopathological studies	139	
5. Conclusion	164	
6. Summary	169	
References	176	
Arabic Summary	201	

List of Tables

No	Title	Page
1	Constituents of the basal diet and vitamins mixture for 100 gm diet.	51
2	Constituents of the salts mixture used in the study.	52
3	Amount of capsaicin (mg/kg) in raw, microwaved and gamma irradiated red chillis.	81
4	Volatile compounds found in raw red chilli sample and their concentrations (mg/kg).	82
5	Volatile compounds found in gamma irradiated red chilli sample and their concentrations (mg/kg).	84
6	Volatile compounds found in microwaved red chilli sample and their concentrations (mg/kg).	85
7	Serum levels of VEGF and TIMP-1 in different red chilli treated DMH groups and controls (14 weeks).	108
8	Serum levels of VEGF and TIMP-1 in different red chillis and 5-flourouracil treated DMH groups and controls (14 weeks).	109
9	Comparison between serum levels of VEGF and TIMP-1 in different red chilli treated DMH groups with and without treatment by 5- fluorouracil (14 weeks).	110
10	Serum levels of VEGF and TIMP-1 in DMH treated different red chilli groups and controls (14 weeks).	111
11	Comparison between serum levels of VEGF and TIMP-1 in different red chilli treated DMH groups and in different DMH treated red chilli groups (14 weeks).	112
12	Serum levels of VEGF and TIMP-1 in different red chilli treated DMH groups and controls (18 weeks).	113

No 13	Title Serum levels of VEGF and TIMP-1 in different red	Page
	chilli and 5-flourouracil treated DMH groups and controls (18 weeks).	
14	Comparison between serum levels of VEGF and TIMP-1 in different red chilli treated DMH groups with and without treatment with 5- fluorouracil (18 weeks).	115
15	Serum levels of VEGF and TIMP-1 in DMH treated different red chilli groups and controls (18 weeks).	116
16	Comparison between serum levels of VEGF and TIMP-1 in different red chilli treated DMH groups and in different DMH treated red chilli groups (18 weeks).	117
17	Correlation coefficient between the different studied variables in group I (DMH + Diet).	118
18	Correlation coefficient between the different studied variables in group II (DMH + 5-FU).	118
19	Correlation coefficient between the different studied variables in group III (Diet+DMH).	119
20	Correlation coefficient between the different studied variables in group IV (DMH + gamma red chilli + 5FU).	119
21	Correlation coefficient between the different studied variables in group V (DMH + microwave red chilli + 5-FU).	120
22	Correlation coefficient between the different studied variables in group VI (DMH + raw red chilli + 5 FU).	120
23	Correlation coefficient between the different studied variables in group VII (DMH + gamma red chilli).	121

No	Title	Page
24	Correlation coefficient between the different studied variables in group VIII (DMH + microwave red chilli).	121
25	Correlation coefficient between the different studied variables in group IX (DMH + raw red chilli).	122
26	Correlation coefficient between the different studied variables in group X (raw red chilli + DMH).	122
27	Correlation coefficient between the different studied variables in group XI (microwave red chilli + DMH).	123
28	Correlation coefficient between the different studied variables in group XII (gamma red chilli + DMH).	123
29	Statistical analysis of AgNORs in different lesions compared with normal control.	144
30	Lesion score of different red chilli treated DMH groups at 14 and 18 wks.	155
31	Lesion score of different red chillis and 5-flourouracil treated DMH groups at 14 and 18 weeks.	157
32	Lesion score of the prevention groups.	159

List of Figures

No	Title	Page
1	Design of the experiment including 130 rats (13 groups).	70
2	Comparison between the micellar electrokinetic chromatograms of a) raw red chilli; b) gamma irradiated red chilli and c) microwaved red chilli (1.5 g of each sample in 10 mL methanol) under the experimental conditions as cited in the text.	86
3	VEGF levels in different groups of 1st study	124
4	TIMP-1 levels in different groups of 1st study	124
5	VEGF levels in different groups of 2nd study	125
6	TIMP-1 levels in different groups of 2nd study	125
7	VEGF levels in different groups of 3rd study	126
8	TIMP-1 levels in different groups of 3rd study	126
9	Correlation between VEGF & TIMP-1 in control group.	127
10	Correlation between VEGF & TIMP-1 in DMH + diet group at 1 month	127
11	Correlation between VEGF & TIMP-1 in DMH + diet group at 2 months	128
12	Correlation between VEGF & TIMP-1 in DMH + raw group at 1 month	128
13	Correlation between VEGF & TIMP-1 in DMH + raw group at 2 months	129
14	Correlation between VEGF & TIMP-1 in DMH + gamma group at 1 month	129
15	Correlation between VEGF & TIMP-1 in DMH + gamma group at 2 months	130
16	Correlation between VEGF & TIMP-1 in DMH + micro group at 1 month	130
17	Correlation between VEGF & TIMP-1 in DMH + micro group at 2 months	131
18	Correlation between VEGF & TIMP-1 in DMH + 5FU group at 1 month	131