

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

CLINICAL AND LABORATORY EVALUATIONS OF HYBRID IONOMERS AND COMPOSITE RESIN IN REINFORCEMENT OF WEAKENED ROOT CANALS OF CENTRAL INCISORS IN CHILDREN

Ph.D. thesis

Submitted to the Faculty of Dentistry, Fanta University
In Lartial Fulfillment for Doctor Degree
In Ledodontics

Presented By Talat Mohammed Beitagy

B.Sc., M.Sc.
Assistant Lecturer in Pedodontics

Pedodntic Department Faculty of Dentistry Tanta University 1999

SUPERVISORS

Prof. Dr. Fatma Abdel-Monuim El Hendawy

Head and Professor of Pedodontics, Public

Health and Preventive Dentistry Department

Faculty of Dentistry

Tanta University

Dr. Hatem Abdel-Hamid Alhadainy

Lecturer, Dept. of Restorative Dentistry

Faculty of Dentistry

Tanta University

Dr. Usama Mahmoud Abdel-Kereim

Lecturer, Dept. of Dental Materials

Faculty of Dentistry

Tanta University

to My Daughters;
Mourhan,

Kariman

&

HASSNAA

ACKNOWLEDGMENTS

All gratitude and thankfulness to ALLAH for guiding and aiding me to bring this work to light.

I would like to express my sciencere thanks and gratitude to professor Dr. Fatma El-Hendawy, Professor and head of Pedodontics and Public Health Department, Faculty of Dentistry, Tanta University, for giving me her guidance, precious confidence, support and appreciated advice during this work.

Really, it is a pleasure to express my deepest thanks and hearty gratitude to Dr. Hatem Alhadainy, Lecturer of Conservative Department, Faculty of Dentistry, Tanta University, for his tremendous effort, friendly attitude through my study, kind supervision and advice that guided my research from the beginning to the end.

I'm grateful also for Dr. Usama Abdel-Keriem, Lecturer of Dental Materials Department, Faculty of Dentistry, Tanat University, for his guidance and supervision in this work.

My deepest thanks to Dr. Ahmad El-Assal, Assistant Professor, Department of Production Engineering

Technology, Benha Higher Institute of Technology, for his helpful and advice in laboratory work in this study.

I would like to thank **Dr.** Abdel Aziz Yassin, Assistant Professor of Public Health Department, Faculty of Medicine, Tanat University, for helping me in the statistical analysis.

I wish to thank Engineering Technician Adel Khadr, for his help in manufactured the assemblies used in this work.

I would like to express my hearty thanks and gratitude to all members, nurses and colleagues of Pedodontic Department.

Special thanks to all children and their parents who showed great deal of cooperation during this work.

I wish to gratefully acknowledge the support of this work by Dentatus USA. I would like to express my deepest thanks to Mr. Bernard Weissman, the President of Dentatus USA, Ltd. for suppling the requested material at no charge. Without Dentatus USA, this work was impossible to be done.

Lastly and not Leastly I'd like to express my gratitude to my wife who supported me in any work I did.

CONTENTS

Chapter	Page
LIST OF TABLES.	
LIST OF FIGURES.	
, 	
INTRODUCTION.	1
REVIEW OF LITERATURE.	4
AIM OF THE STUDY.	42
MATERIALS AND METHODS.	43
RESULTS.	102
DISCUSSION.	136
SUMMARY.	156
CONCLUSION.	160
REFERENCES.	161
AD ADIC CUMMA ADV	

LIST OF TABLES

No. of Table	Page
Table (1): Materials used in intraradicular reinforcement.	49
Table (2): Clinical results of studied groups after 3 months follow up.	103
Table (3): Clinical results of studied groups after 6 months follow up.	104
Table (4): Clinical results of studied groups after 12 months follow up.	105
Table (5): Clinical results of studied groups after 18 months follow up.	106
Table (6): Radiographical results of studied groups after 6 months follow up.	111
Table (7): Radiographical results of studied groups after 3 months follow up.	112
Table (8): Radiographical results of studied groups after 12 months follow up.	113
Table (9): Radiographical results of studied groups after 18 months follow up.	114
Table (10): Fracture resistance of reinforced materials and control group.	129
Table (11): Comparison between the studied groups as regards fracture resistance of reinforced and control groups (N).	130
Table (12): Shear bond strengths of different reinforcing materials to root dentin.	133
Table (13): Comparison between the studied groups as regards shear	134

LIST OF FIGURES

Figure	Page
Fig. (1): Different sizes of Dentatus Classic Reamers (from 1 to 6).	45
Fig. (2): a) Impression Post (DIP-5) and Grooved Burnout Casting Post (DCP-5).	47
b) Magnified Impression Post (above) and Burnout Casting Post (down).	
c) Lumenix 2000 Smooth Light Transmitting Plastic Posts (SLTP) (DIP-1	
to DIP-6).	
Fig. (3):a) Periapical radiograph of maxillary anterior teeth showing apical gutta	51
perch seal (4-5mm) of flared central incisors (arrows), A. The	
radiograph after application of guide path part (centralization	
technique) (arrows) B and C.	
Fig. (4): Compules Tips Gun (A), Delivery Tip (B) Peston Flush (C) and Dyract	52
Compule (D).	
Fig. (5): A case of group (I) showing Intraradicular reinforcement of upper right	54
central incisor by TPH Spectrum composite resin.	
Fig. (6): A case of group (II) showing Intraradicular reinforcement of upper right	59
central incisor by Dyract.	
Fig. (7): A case of group (III) showing Intraradicular reinforcement of upper left	65
central incisor by Vitremer.	
Fig. (8): A case of control group (group IV) showing fractured upper left central	69
incisor with normal root canal and showing Post/core treatment without	
material reinforcement.	
Fig. (9): Special device for radiographic preoperative standardization of the	75
selected teeth. Metallic ring for x-ray tube (A), film holder (B) and acrylic	
tube guide (C).	
Fig.(10): The device mounted on the X-ray tube (18 mm from the tooth).	75 ·
Fig. (11): a) Standardization of roots length by Vernier Caliper.	76
b) Standardization of roots size labiolingually by Vernier Caliper.	
c) Standardization of roots size mesiodistally by Vernier Caliper.	
Fig. (12): a) Different sizes of laboratory carbide burs for flaring the root canals.	79
b) Specials drill apparatus for flaring of specimens.	
c) The specimen during flaring procedures.	
Fig. (13): Structurally weakened specimen design.	80
Fig. (14): Radiograph showing structurally weakened specimens.	80
Fig. (15): a) A specimen from each group before reinforcement and post and core	81
fabrication. Negative control (Left).	
b) A specimen from each group after reinforcement by (Composite,	
Dyract, Vitremer), with Positive and negative control (Right to left).	

Fig. (16): Radiograph showing intra-radicular reinforcement of specimens by Composite, Dyract and Vitremer (Right to left).	86
Fig. (17): Standardized Disposable Forms-to-Fit Shell encircled the specimen	87
by needle holder before core waxing up.	
Fig. (18):a) Metallic rod with 60 degrees used to from lingual indentation in the	87
wax pattern (A). The core patter after making 60 degrees (B).	
Fig (19): a) A specimen from each group with the waxed core.	88
b) A specimen from each group with DCP-5 and waxed core before	
casting. (Positive control in the middle).	
Fig. (20): a) Nickel chrome post and core of each group ready for cementation.	89
b) A specimen from each group with the metal core after cementation.	
Fig. (21): a) Reinforced specimen and dowel and core restoration design.	90
b) A specimen with post/core restoration without material	
reinforcement (negative control) design.	
c) A flared specimen and post/core restoration without reinforcement	
(positive control) design.	
Fig. (22):a) Radiograph (Labiolongual view) showing final restoration of a	91
specimen from each group. Group I, II, III, positive and negative	
control (Right to left).	
b) Radiograph (Mesiodistal view) showing final restoration of a	
specimen from each group. Group I, II, III, positive and negative	
control. (Left to right).	
Fig. (23): a) Acrylic molded specimen within the metallic cylinder.	93
b) Special assembly used to hold specimen at an angle of 130 degrees	
(Anterior view).	
c) The specimen within the assembly (Anterior view).	
d) The specimen within the assembly (Lateral view).	
Fig. (24): a) Testometric machine (200 KN) used for fracture resistance	94
measurement.	
b) Mounted specimen ready for fracture resistance testing in	
Testometric machine. The specimen demonstrates the contact	
angle for loading.	
c) The specimen after failure.	
Fig. (25): Specimen preparation.	96
Fig. (26): The assembly used in shear bond measurement. The assembly	100
(Anterior view). Solid block (a), Sheared blade (b), Metallic ring (c)	
and Half circle of 3.0 mm diameter (d) (shearing area) (arrow) (A). The	
assembly (Lateral view) (B).	
Fig. (27): Testometric Machine with the assembly. The assembly mounted in	101
Testometric testing machine (A). The assembly and specimen in	
Testometric machine before shear bond testing (B).	

Fig. (28): Photograph showing marginal and papillary inflammation (arrow) 3-107 month later. Fig. (29): Photograph showing marginal and papillary inflammation and crown 107 discoloration 6-month later. Fig. (30):a) Photograph showing upper right central incisor after displacement 108 of reinforcing material (Dyract) 12-month later. b) Photograph showing the displaced segment (crown, reinforcing material and post). Fig. (31): Preoperative periapical radiograph of maxillary anterior teeth that had 115 been endodontically treated by a dentist. The right central and lateral incisors showing serrated posts and lateral incisor showing overfilling and no periapical radiolucency (A). The same case during reinforcement of right central by Spectrum composite (B). The radiolucency begins to appear with overfilled lateral incisor 6-month (C) and 18-month later, while the reinforced tooth appear free (D). Fig. (32): Preoperative periapical radiograph of flared maxillary right central 116 incisor associated with periapical radiolucency and showing trial insertion of master gutta-percha cone (A). The radiolucency begins to decrease in size during reinforcement procedures by Spectrum composite, 2 months postobturation (B). The radiolucency begins to disappear after 6 months (C) and completely disappeared 12-month later (D). Fig. (33): Preoperative periapical radiograph of maxillary right central incisor 117 indicated for reinforcement and associated with periapical radiolucency (A). The same case during removal of coronal guttapercha. Note, increase the size of radiolucency (B), which begin to decrease 3-month postreinforcement by Spectrum composite (C) and completely disappeared 6-month later (D). Fig. (34): Preoperative periapical radiograph of maxillary right central incisor 118 showing old gutta-percha filling and indicated for intraradicular reinforcement (A). Post reinforcement (Dyract) radiograph of the same case showing no periapical changes 18-month later (B). Fig. (35): Preoperative periapical radiograph of maxillary right central incisor 119 indicated for intraradicular reinforcement and associated with periapical radiolucency (A). Postreinforcement (Dyract) radiograph 6, 12 and 18-month later showing the begin of complete disappearance

of radiolucency (B).