

Ain Shams University Faculty of Engineering Department of Structural Engineering

Mechanical Anchorage to Enhance the Bond Strength of Prestressed CFRP Laminates Bonded to Structural Steel Beams

A Dissertation

Submitted in Partial Fulfilment for the Requirements of the de6gree of Doctorate of Philosophy in Civil Engineering (Structural Engineering)

by Mohamed Abdelkhalek Gharib Abdelmaksoud

MSc in Civil Engineering Technology Higher Institute of Technology - Benha University - 2008

Supervised by

Prof. Ezzeldin Yazeed Sayed-Ahmed

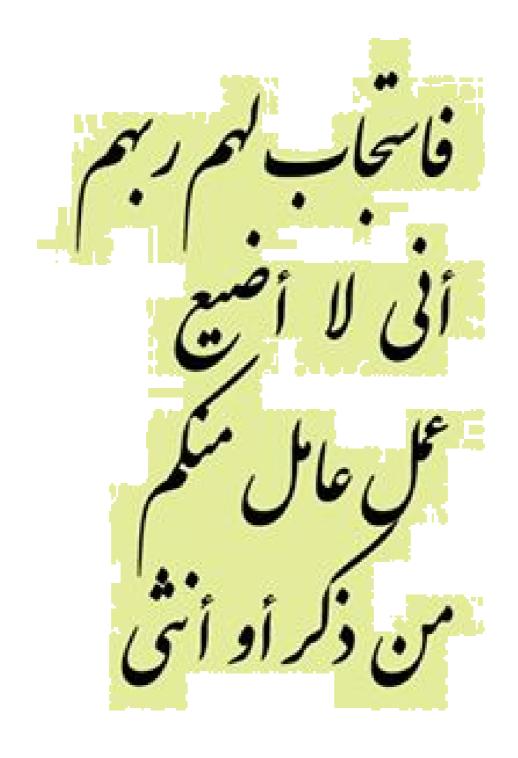
Professor of Steel Structures Structural Engineering Department Ain Shams University

Dr. Mohamed Abdel Hhalim Khedr

Associate Professor of Structural Engineering Civil Engineering Department Benha University

Prof. Samir Abd ElMeguid Heikal

(Deceased)


Professor of Steel Structures Structural Engineering Department Ain Shams University

Dr. Waleed H. Khushefati

Assistant Professor of Civil Engineering Dept. of Civil Eng., Faculty of Eng., King Abdulaziz University, Saudi Arabia

July 2016

Cairo-Egypt

آل عمران (۱۹۵)

Ain Shams University Faculty of Engineering Department of Structural Engineering

Mechanical Anchorage to Enhance the Bond Strength of Prestressed CFRP Laminates Bonded to Structural Steel Beams

by Mohamed Abdelkhalek Gharib Abdelmaksoud

MSc in Civil Engineering Technology Higher Institute of Technology - Benha University - 2008

Examiners' Committee

Name and Affiliation	Signature
Prof. Nigel G. Shrive Professor, Dept. of Civil Engineering Schulich School of Engineering The University of Calgary, Calgary, Alberta, Canada.	NEThr
Prof. Ossama Mohamed El Hosseiny Professor of Steel Structure Faculty of Engineering Zagazig University	
Prof. Ezzeldin Yazeed Sayed-Ahmed Professor of Steel Structures Faculty of Engineering Ain Shams University	

Date: 2 Jul 2016

STATEMENT

This thesis is submitted as a partial fulfilment of Doctor of Philosophy in Civil

Engineering, (Structural Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has

been submitted for a degree or a qualification at any other scientific entity.

Name: Mohamed A. Gharib Abdelmaksoud

Signature:

Date: 2 Jul 2016

Researcher Data

Name : Mohamed Abdelkhalek Gharib Abdelmaksoud

Date of birth : February 2nd, 1976

Place of birth : Kuwait

Last academic degree : Master of Science

Field of specialization : Civil Engineering Technology (Structural

Engineering)

University issued the degree : Higher Institute of Technology, Benha University.

Date of issued degree : August 2008

Current job : Civil Engineer

Thesis Summary

The carbon fibers (CFRP) in the form of laminates can be applied to retrofit flexural concrete and steel members. However, interfacial stress between the CFRP and steel surface tend to be high especially at the edges of the laminates. Strengthening systems with prestressing is suggested in order to effectively utilize the CFRP to overcome the failure mode caused by debonding. Applying prestressing force to CFRP laminates bonded to steel or reinforced concrete beams can be done by using mechanical anchorage. Adding mechanical anchorages to the ends of the laminate can ensure a better ductile behaviour and can also increase the allowable level of prestressing. In the present research, a mechanical anchorage prestressing system is introduced in order to maintain the initial prestressing applied to the CFRP laminates, and delay the premature debonding failure. A numerical analysis and an experimental program was conducted on steel I-beam sections subjected to flexure and strengthened using prestressed CFRP laminate to evaluate the performance and the effectiveness of this technique. The experimental program consisted of testing 10 steel beams strengthened with bonded and unbonded prestressed CFRP laminate with and without mechanical end anchorage system. The results, failure modes and the observations of the experimental tests are illustrated and discussed. To predict the interfacial stress acting on the contact zone, an analytical model of beams with CFRP is developed. 4 beams are evaluated using the developed analytical model equations. A finite element analysis was conducted using the cohesive zone method (CZM) to extend the study. To verify the developed finite element model, the experimental tests results are compared to the finite element model outputs. The finite element model is used to evaluate the effect of increasing the prestressing level applied to the CFRP reinforcement. It was found that using the prestressed CFRP laminate with the mechanical anchorage system increases the overall strength of the beams, delays the premature debonding failure and enhances the serviceability of the composite section

Key words:

Steel Structure – CFRP – Prestressing – Mechanical Anchorage – CZM – Interfascial stresses

Acknowledgements

Firstly and foremost, I would like to thank and praise ALLAH Almighty for His limitless help and guidance.

I am greatly thankful to Prof. Ezzeldin Yazeed and to Dr. Mohamed Khedr. To them I am very grateful for their generous supervision, guidance, continuous support and encouragement.

I am also grateful to my father and my family especially my mother and my wife for their continuous support and encouragement as well.

Finally, I wish to thank all those who gave me their hands during executing this research, Dr. Waleed Khushefati and the civil engineering department at King Abdulaziz University, my colleagues at Bemco steel Industries, Sika Group, Saudi Arabia and my friend Dr. Alaa El Sisi.

July 2016

ABSTRACT

The use of fibre reinforced Polymers (FRP) composites for rehabilitations of concrete structures and members is now a common and widely used practice. However, this method stills not a mainstream application when it comes to steel structural members because of economical and design reasons. The most important concern regarding the effective application of this strengthening technique to steel structures is the debonding failure mode.

Available commercial FRP products come mainly in two types, Glass fibres and carbon fibres. The carbon fibers (CFRP) with its high tensile modules enhanced mechanical properties and higher fibre volume in the form of laminates and strips can be beneficially applied to retrofit flexural steel members. However, CFRP laminates have a small width and a large thickness, thus, interfacial stress between the CFRP and steel surface tend to be high especially at the edges of the laminates.

Alternatively, strengthening systems with prestressing is suggested in order to effectively utilize the CFRP materials and overcome the brittle failure mode caused by debonding or delamination of the laminates; CFRP prestressing was successfully applied to reinforced concrete beams loaded in flexure but was not thought of for steel beams with CFRP laminates. Applying prestressing force to CFRP laminates bonded to steel or reinforced concrete beams can be done by many techniques. None of these techniques can be effective without using a mechanical anchorage because of the debonding phenomena associated with the adhesive layer. Adding mechanical anchorages to the ends of the laminate can ensure a better ductile behaviour and can also increase the allowable level of prestressing that can be applied. As a result, the use of a mechanical anchorage is thought to greatly improve the strength and serviceability of strengthened beams.

In the present research, a mechanical anchorage prestressing system is introduced in order to maintain the initial prestressing applied to the CFRP laminates, and delay the premature debonding failure. A numerical analysis and an experimental program was conducted on steel I-beam sections subjected to flexure and strengthened

using prestressed CFRP laminate to evaluate the performance and the effectiveness of this technique.

The experimental program consisted of testing 10 steel beams strengthened with bonded and unbonded prestressed CFRP laminate with and without mechanical end anchorage system. The results, failure modes and the observations of the experimental tests are illustrated and discussed. To predict the interfacial stress acting on the adhesive layer, an analytical model of steel beams with CFRP prestressed laminates and mechanical anchorage is developed. 4 beams described and tested in the experimental program are evaluated using the developed analytical model equations. The results of the analysis, with and without mechanical anchorage, are shown and discussed. A finite element analysis was conducted using the cohesive zone method (CZM) to extend the study. To verify the results of the developed finite element model, the measurements of the experimental tests are compared to the finite element model outputs. After verification, the finite element model is used to evaluate the effect of increasing the prestressing level applied to the CFRP reinforcement.

It was found that using the prestressed CFRP laminate with the mechanical anchorage system increases the overall strength of the beams, delays the premature debonding failure and eventually enhances the serviceability of the composite section.

Table of Contents

Acknowledgements
ABSTRACTvii
Table of Contentsix
List of Tablesxiii
List of Figures xiv
List of Symbolsxix
Chapter (1) Introduction
1.1 Overview
1.2 Objectives and Investigation Scope of Work
1.3 Dissertation Outline
Chapter (2) Review of Previous Research
2.1 Overview
2.2 Strengthening Steel Beams with Bonded CFRP Laminates
2.3 Flexural strengthening with Prestressed CFRP
2.3.2 Optimum prestressing force.
2.3.3 Advanced prestressing techniques
2.4 Anchorage and Strengthening Element Separation
2.5 Analytical and Finite Element Modeling29
2.5.1 Modeling Retrofitted Steel and Concrete Structures:
2.6 Summary and Synthesis

Chapter (3) The Experimental Work	42
3.1 Introduction	42
3.2 Description of the Tested Beams	42
3.3 Prestressing System	48
3.4 Material properties	53
3.5 Test set-up	56
3.6 Instrumentation	57
3.7 Prestressing trials	57
3.8 Execution Procedures (Sample Preparation and testing)	58
3.9 The Experimental Results.	60
3.9.1 Failure Modes	60
3.9.2 Load-displacement relationship	65
3.9.3 Strain gauge readings	70
Chapter (4) The Analytical Model	73
4.1 Introduction	73
4.2 Proposed Analytical Model and its Theoretical Approach	73
4.2.1 Adhesive Shear Stress	76
4.2.2 Adhesive Normal stress	81
Chapter (5) Finite Element Analysis	93
5.1 Overview	93
5.2 Types of Elements Used In the Finite Element Analysis	93
5.2.1 SHELL Element for the Steel Beam	93

5.2.2 Solid Element for CFRP laminate and Adhesive	94
5.2.3 Interface Element for the Interface between CFRP and adhesive	95
5.3 Interface Delamination/Debonding and Failure Simulation	95
5.3.1 Cohesive Zone modelling	98
5.3.2 Material definition	104
5.3.3 Constants calculation	104
5.3.4 Creation of the Cohesive Zone elements	105
5.4 Mechanical Anchorage Modeling (Bolts Modeling)	105
5.5 Prestressing Effect.	106
5.6 Material Modeling	107
5.6.1 Steel data	107
5.6.2 The CFRP Laminate	108
5.6.3 The Adhesive	109
5.7 Material Properties Used	109
5.7.1 The Steel Beams	109
5.7.2 The CFRP Laminates	109
5.8 Boundary Conditions	110
5.9 The Numerically Modeled Beams	111
5.9.1. Stage I: Validating the finite element model	111
5.9.2. Stage II: Extending the study	112
5.10 Convergence Criteria	112
Chapter (6) Discussion of the Experimental and Numerical Investigation	114

6.1 Overview	114
6.2 Validating of the Numerical Analysis Model	114
6.2.1 Load deflection response	114
6.2.2 Failure modes	118
6.2.3 Strain readings	121
6.3 Experimental, Analytical and Numerical Results	122
6.4 Effect of prestressing force level	123
Chapter (7) Conclusions	127
7.1 The Experimental Program:	127
7.2 The Analytical Investigation	128
7.2.1 Procedure to calculate the shear and normal stresses	128
7.2.2 Analytical results:	128
7.3 The Numerical (FEA) Results	129
7.4 Recommendations for future work:	130
References	131
Appendix	138
Analytical Model Calculations	138

List of Tables

Table 2-1: CFRP Classification based on tensile modules	7
Table 2-2: Examples of bridges retrofitting using CFRP	9
Table 3-1: Test Specimen Details.	43
Table 3-2: Mechanical properties of the analysed beams	53
Table 3-3: Properties of the CFRP laminates.	54
Table 3-4: Properties of the epoxy adhesive	54
Table 3-5: Test Results.	72
Table 4-1: Calculation of interfacial shear and normal stress	88
Table 4-2: Peak interfacial shear and normal stress for the tested specimen.	89
Table 5-1: Mechanical properties of the analysed beams	109
Table 5-2: Properties of the CFRP laminates.	110
Table 5-3: Properties of the epoxy adhesive	110
Table 5-4: Analysed beams details	111
Table 6-1: Experimental, analytical and numerical results comparison	123
Table 6-2: B3 FEA failure loads.	124

List of Figures

Figure 1-1: Schematic of the Research Plan. 5
Figure 2-1: Schematic of FRP composites
Figure 2-2: Detail of strengthened steel beam (Linghoff et al. 2010) [30]12
Figure 2-3: Stress & strain distribution on a fully plastic strengthened beam cross section (Linghoff et al. 2010) [31].
Figure 2-4: Jacking assemblage for large-scale beam tested by Youa et al. (2012) [52].
Figure 2-5: Load-displacement relationship of the beams tested by Youa (2012) [52].
Figure 2-6: Schematic diagram of the setup and prestressing system against external reaction frame by Nordin et al. (2001)[38]
Figure 2-7: Schematic diagram and photo of the steel-wedge anchorage system used
by Al-Mayah et al. (2003 and 2005) [3, 4]20
Figure 2-8: Schematic diagram of the setup and prestressing system used by Badawi (2007) [7].
Figure 2-9: Beam details investigated by Ziraba et al. (1994) [58]24
Figure 2-10: Beam details investigated by Ziraba et al. (1994) [58]24
Figure 2-11: Beam details investigated by Sallam et al. (2004) [40]25
Figure 2-12: End geometry of beams investigated by Bank and Arora (2007) [9]26
Figure 2-13: Bearing failure in the FRP laminate at end (Bank and Arora 2007) [9]. 27
Figure 2-14a: Anchorage system by Wu (2012) [50]
Figure 2-14b: Anchorage system by Wu (2012) [50]