# THE ROLE OF MULTI DETECTOR COMPUTED TOMOGRAPHY CORONARY ANGIOGRAPHY (MDCTCA) IN EVALUATION OF PATIENTS WITH RECENT ONSET CHEST PAIN

#### Thesis

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By Rasha Jasim Abed M.B.B.CH.

#### Supervised by

Prof. Dr. Omnia Ahmed Kamal Youssif
Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Sherin Mohamed Sharara
Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Department of Radiodiagnosis
Faculty of Medicine
Ain Shams University
2014





## I Praise **Allah** Thank Him, Seek His Help, Guidance and Forgiveness ... then:

My deepest thanks and appreciation to Prof. Dr. Omnia Ahmed Kamal Youssif Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her invaluable guidance and help in supervising this work. No words can express my feelings, respect and gratitude to her.

I am grateful to Dr. Sherin Mohamed Sharara , Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his effort.

Special thanks for my husband **Dr Nibras Mejbel Abed**, for his guidance, encouragement, and unlimited support.

At last, but definitely not the least, I deeply thank My Father, Mother, Brothers, Sisters, wife & Sons for their endless support and encouragement to complete this work.

## **Table of Contents**

| Contents                                                  | Page        |
|-----------------------------------------------------------|-------------|
| List of Tables                                            | ii          |
| List of Figures                                           | iii         |
| List of Abbreviation                                      | vi          |
| Introduction & Aim of the Work                            | 1           |
| Review of literature:                                     |             |
| Chapter I - Radiological anatomy of the coronary arteries | 5           |
| Chapter II - Physical principle of CTCA                   | 32          |
| Chapter III - Image display                               | 56          |
| Chapter IV - Assessment of coronary artery disease        | <b>(0</b> ) |
| by MDCT                                                   | 69          |
| Patients & Methods                                        | 100         |
| Results                                                   | 112         |
| Illustrative Cases                                        | 123         |
| Discussion                                                | 143         |
| Summary & Conclusion                                      | 154         |
| References                                                | 157         |
| Arabic Summary                                            | I           |

### List of Tables

## List of Tables

| Table No. | Title                                                                                                | Page |
|-----------|------------------------------------------------------------------------------------------------------|------|
| Table 1   | Congenital anomalies of coronary arteries                                                            | 23   |
| Table 2   | Developments in multislice CT scanners                                                               | 43   |
| Table 3   | Categories of coronary calcium scoring                                                               | 81   |
| Table 4   | The findings of CTCA                                                                                 | 115  |
| Table 5   | Ca Scoring in relation to sex                                                                        | 116  |
| Table 6   | CACS Scoring in relation to Age                                                                      | 117  |
| Table 7   | Ca Scoring in relation to sex below 60 years old                                                     | 117  |
| Table 8   | CACS in relation to risk factors                                                                     | 118  |
| Table 9   | Distribution of the lesions through coronaries and their degree of stenosis, SD: Standard Deviation. | 119  |
| Table 10  | The relation between number of vessel affection and the degree of stenosis                           | 120  |
| Table 11  | The relation between number of vessel affection and the degree of stenosis                           | 120  |
| Table 12  | The Number of vessels affection in diabetic / non diabetic and hypertensive / normotensive patients  | 121  |

### List of Figures

## **List of Figures**

| Fig. No. | Title                                     | Page |
|----------|-------------------------------------------|------|
| Fig 1    | Origin of the Coronary Arteries           | 5    |
| Fig 2    | Right coronary artery (RCA) anatomy       | 6    |
| Fig 3    | Multiple coronary ostia                   | 7    |
| Fig 4    | Course of RCA                             | 8    |
| Fig 5    | Distal dominant right coronary artery     | 8    |
| Fig 6    | Left coronary system                      | 10   |
| Fig 7    | Trifurcation of LM system                 | 11   |
| Fig 8    | CT images of normal heart                 | 12   |
| Fig 9    | Major cardiac veins                       | 15   |
| Fig 10   | Coronary artery segments                  | 17   |
| Fig 11   | Coronary Dominance                        | 19   |
| Fig 12   | LM trifurcation showing RI                | 20   |
| Fig 13   | PDA duplication                           | 20   |
| Fig 14   | Early division of LM                      | 21   |
| Fig 15   | Separate origins                          | 21   |
| Fig 16   | Single coronary artery                    | 25   |
| Fig 17   | LCA arising from the right coronary sinus | 26   |
| Fig 18   | LCA anomaly                               | 27   |

## List of Figures

| Fig. No. | Title                                             | Pag<br>e |
|----------|---------------------------------------------------|----------|
| Fig 19   | LAD Bridging                                      | 28       |
| Fig 20   | Duplication of the LAD                            | 29       |
| Fig 21   | Coronary artery fistula                           | 30       |
| Fig 22   | 3D VR with 64-slice CT                            | 40       |
| Fig 23   | Three-dimensional volume rendering                | 41       |
| Fig 24   | 3D VR with 320-slice CT                           | 42       |
| Fig 25   | Retrospective ECG without tube current modulation | 45       |
| Fig 26   | Retrospective ECG with tube current modulation    | 46       |
| Fig 27   | Prospective electrocardiogram-triggering          | 50       |
| Fig 28   | Importance of the ECG gating                      | 53       |
| Fig 29   | Systolic vs. Diastolic reconstruction             | 54       |
| Fig 30   | Multiplanar reconstructions                       | 58       |
| Fig 31   | MIP projection                                    | 61       |
| Fig 32   | Pulsation (step ladder) artifact                  | 63       |
| Fig 33   | Stepladder artifact due to respiratory motion     | 65       |
| Fig 34   | Streak artifacts                                  | 66       |
| Fig 35   | Pitfalls of interpretation                        | 68       |
| Fig 36   | Pathogenesis of acute coronary syndromes          | 76       |
| Fig 37   | Coronary artery calcification with threshold      | 77       |

## List of Figures

| Fig.   | Title                                                                                 | Page |
|--------|---------------------------------------------------------------------------------------|------|
| Fig 38 | Coronary artery calcification with threshold                                          | 78   |
| Fig 39 | Bolus tracking technique                                                              | 90   |
| Fig 40 | Effect of saline chaser                                                               | 91   |
| Fig 41 | Pie chart representing patient's gender                                               | 112  |
| Fig 42 | Cylinder chart represents the risk factors of the patients                            | 113  |
| Fig 43 | Pie chart represents the frequency of CAD among patients with recent onset chest pain | 114  |
| Fig 44 | Bar chart represents the frequency and significance of CAD regarding CACS             | 116  |
| Fig 45 | Pie chart represents the types of plaque                                              | 121  |
| Fig 46 | Cylinder chart Represents the types of plaque that caused significant stenosis        | 122  |
| Fig 47 | Case 1                                                                                | 124  |
| Fig 48 | Case 2                                                                                | 126  |
| Fig 49 | Case 3                                                                                | 128  |
| Fig 50 | Case 4                                                                                | 130  |
| Fig 51 | Case 5                                                                                | 132  |
| Fig 52 | Case 6                                                                                | 134  |
| Fig 53 | Case 7                                                                                | 136  |
| Fig 54 | Case 8                                                                                | 138  |
| Fig 55 | Case 9                                                                                | 140  |
| Fig 56 | Case 10                                                                               | 142  |

## List of Abbreviations

| 3D   | Three Dimension                    |
|------|------------------------------------|
| ACD  | Acute Coronary Disease             |
| ACE  | Automatic Exposure Control         |
| ACS  | Acute Coronary Syndromes           |
| AHA  | American Heart Association         |
| Ao   | Aorta                              |
| AP   | Antero-Posterior                   |
| AVN  | Atrioventricular Node              |
| BMI  | Body Mass Index                    |
| bpm  | Beat per Minute                    |
| CABG | Coronary Artery Bypass<br>Grafting |
| CAC  | Coronary Artery Calcium            |
| CACS | Coronary Artery Calcium<br>Score   |
| CAD  | Coronary Artery Disease            |
| CHD  | Coronary Heart Disease             |
| СТ   | Computed Tomography                |
| CTCA | CT Coronary Angiography            |
| D    | Diagonal Branch                    |
| DM   | Diabetes Mellitus                  |
| EBCT | Electron Beam Computed Tomography  |
| ECG  | Electrocardiography                |
| HU   | Hounsfield Unit                    |
| IHD  | Ischemic Heart Disease             |
| IMB  | Inferior Marginal Branch           |
| KV   | Kilo Volt                          |

| kVp  | Kilo Voltage Peak                    |
|------|--------------------------------------|
| LAD  | Left Anterior Descending             |
| LAO  | Left Anterior Oblique                |
| LCX  | Left Circumflex                      |
| LM   | Left Main Coronary                   |
| LV   | Left Ventricle                       |
| mA   | milli-Ampere                         |
| mAS  | milli-Ampere Second                  |
| MDCT | Multidetector Computed<br>Tomography |
| MI   | Myocardial Infarction                |
| MIP  | Maximum Intensity Projection         |
| MPR  | Multiplanar Reformation              |
| MSCT | Multislice Computed Tomography       |
| NPV  | Negative Predictive Value            |
| PDA  | Posterior Descending Artery          |
| PLB  | Posterior Lateral Branch             |
| RAO  | Right Anterior Oblique               |
| RCA  | Right Coronary Artery                |
| RI   | Ramus Intermedius Artery             |
| ROI  | Region Of Interest                   |
| S    | Septal branch                        |
| SD   | Standard Deviation                   |
| UA   | Unstable Angina                      |
| VR   | Volume Rendering                     |
|      |                                      |

#### INTRODUCTION

Recent onset chest pain was defined as an unstable angina, which is a clinical syndrome between stable angina and acute myocardial infarction in which the thoracic pain may mark the onset of acute myocardial infarction. It typically occurs at rest and has a sudden onset, sudden worsening, and recurrence over days and weeks. It carries a more severe short-term prognosis than stable chronic angina (*Russo et al.*, 2010).

It is also defined as chest pain with altered frequency or character that is suspicious for acute coronary disease (CAD) (*Dedic et al.*, 2011).

Coronary artery disease (CAD) remains the commonest cause of morbidity and mortality in the developed countries, and a leading cause of death in Western countries (Koulaouzidis et al.,2012).

MDCTCA allows anatomical, non-invasive imaging of the coronary arteries in patients with stable and unstable angina by performing non-invasive angiography, including:

- Detection of coronary atherosclerosis by assessing the coronary artery calcium (CAC) (calcium score)
- Important information regarding the coronary plaques (Site, Size, Shape, and Number).

- Identifying the degree of coronary lumen stenosis.
- Defining therapeutic options, and determining prognosis (*Nasti et al.*, 2011).

Until recently, invasive coronary angiography (ICA) has been the gold standard for accurate assessment of the presence, extent and severity of CAD. However, it is an invasive procedure and not without complications, especially in high risk and unstable patients (*Koulaouzidis et al.*,2012).

Computed tomography coronary angiography (CTCA) is a rapid, non-invasive diagnostic tool, which has gained increasing acceptance as an alternative means of accurate and safe detection of coronary atherosclerotic plaques and CAD (*Koulaouzidis et al.*,2012).

With the advent of technology, the performance of this modality has further improved, providing near 100% sensitivity and >90% specificity as well as further reducing radiation dosage to approximately 10% than of invasive coronary angiography. Moreover, a CTCA study can be completed within minutes and along with its non-invasive characters may enable optimal CAD detection with decreased health care costs and fewer complications (*Koulaouzidis et al.*,2012).

With the recent development of the latest models of Multislice CT (MDCT) such as 16, 64, 128 dual source, 256

and 320 slice CT scanners, the diagnostic accuracy of MDCT angiogram in CAD has significantly improved. The clinical application of CT angiogram is of enormous clinical value even with patients who have a low likelihood of CAD.

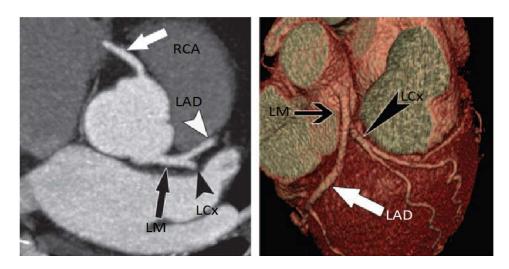
MDCT has further contributed to better image quality in cardiac imaging by the introduction of dual source CT in 2006, as the temporal resolution is shortened from 165 to 83 ms and heart rate dependence is eliminated. Several meta-analysis of 64slice CT studies have reported an impressive range of results in sensitivity and specificity (99% sensitivity and 89% specificity in 28 studies) (*Chopra and Peter, 2012*).

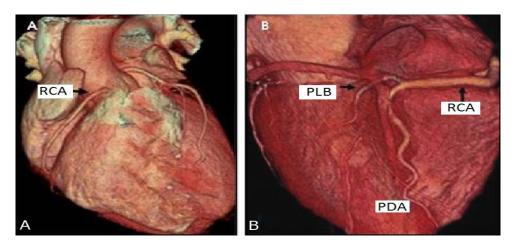
## **AIM OF STUDY**

To evaluate the patients with recent onset chest pain by the use of Multi Detector CT Coronary Angiography, and asses the frequency, pattern, and severity of coronary artery disease among them.

#### **NORMAL CORONARY ARTERIES**

There are left and right main coronary systems. The left coronary system comprises the left main artery (LM), which bifurcates into the left anterior descending artery (LAD) and the left circumflex artery (LCX). The right coronary system comprises the right coronary artery (RCA) (Fig 1) (Mahani & Agarwal, 2011).





Fig 1: Origin of the Coronary Arteries. (a) Axial MPR image & (b) 3D VR image show the origin of the coronary arteries from the aorta. The LM bifurcates into the LAD and the LCx. LM= Left main coronary artery, LAD= left anterior descending artery, LCx= left circumflex artery, MPR=multiplanar reconstruction, VR=Volume Rendering (Quoted from Kini et al., 2007).

The myocardial distribution of the coronary arteries is somewhat variable, but the right coronary artery (RCA) almost always supplies the right ventricle (RV), and the left coronary artery supplies the anterior portion of the ventricular septum

and anterior wall of the left ventricle. The vessels that supply the remainder of the LV vary depending on the coronary dominance (*Kini et al.*, 2007).

#### **Right Coronary Artery and its Branches**

The RCA arises from the anteriorly positioned right sinus of Valsalva at a slightly lower level than the origin of the left main coronary artery (Fig 2), and courses through the right atrioventricular groove. The conus artery is the first branch of RCA in 50% of cases, and it supplies the right ventricular infundibulum. In the remaining 50% of cases, the conus artery arises directly from the aorta separately from the RCA (Fig 3) (Mahani & Agarwal, 2011).



**Fig 2: Right coronary artery (RCA) anatomy.** (A) 3D VR image shows the normal origin of RCA and its course in the right AV groove. (B) 3D VR image shows the posterior descending artery (PDA) and posterior lateral branch (PLB) in a right dominant coronary artery system (*Quoted from Mahani & Agarwal, 2011*).