

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

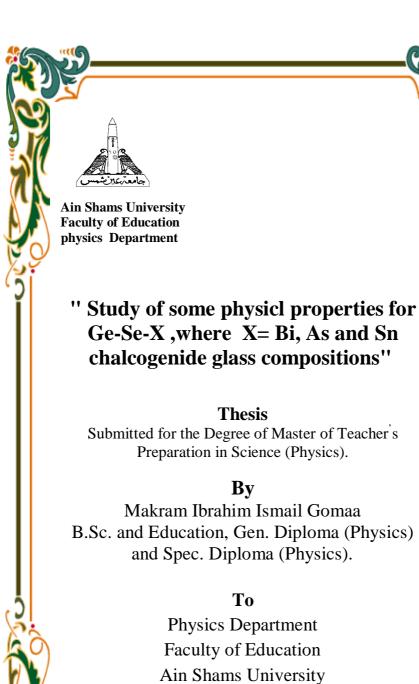
التوثيق الإلكتروني والميكروفيلم

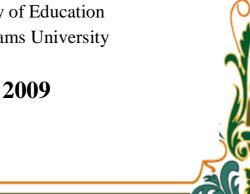
قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار





بالرسالة صفحات لم ترد بالأصل

Approval Sheet

"Study of some physicl properties for Ge Se X ,where X= Bi, As and Sn chalcogenide glass compositions"

Candidate: Makram Ibrahim Ismail.

Degree of Master of Teacher's Preparation in Science (Physics).

Board of Advisors

Approved by Signature

1. Prof. Dr/M. A. Afifi.

Physics Department, Faculty of Education, Ain Shams University

2. Prof.Dr/ N.A. Hegab.

Physics Department, Faculty of Education, Ain Shams University

3. Dr/ H. E. Atiya.

Physics Department, Faculty of Education, Ain Shams University

Date of presentation / /2009

Post graduate studies:

Stamp: / /	Date	of a	pproval:	/	/
Approval of Faculty Coun	icil:	/	/ 2009		

Approval of University Council: / / 2009

ACKNOWLEDEGMENT

ACKNOWLEDGEMENT

Before all and above all, many thanks to Allah, the lord of all being.

The author indebted with his utmost thanks to Prof. Dr/ *M.A.Afifi the head of the semiconductors Lab.* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

Deepest gratitude to Prof. Dr/ *N.A.Hegab* for her advice, valuable help and encouragement during this study and fruitful advice throughout this work.

The author wishes to thank Dr / *H.E.Atiya* for her valuable help, encouragement and fruitful advice throughout this work.

The author wishes to express his sincere gratitude to Prof. Dr/ *Souzan Mohamed Slah El-Deen*, Head of Physics Department, Faculty of Education, Ain Shams University for rendering facilities.

Finally, the assistance of the staff members and colleagues of semiconductor laboratory, thin film laboratory are highly appreciated.

Contents

Contents

	Page
List of Figures	1
List of Tables	7
Abstract	8
Introduction	10
Chapter I	
Theoretical Background and Literature Review.	
1.1 Semiconducting materials.	16
1.1.1 Classification of semiconductors.	17
1.2 Band models of amorphous semiconductors.	18
I.3 Electrical conduction in amorphous	23
semiconductors.	
1.3.1 Dc conduction in amorphous semiconductors.	23
1.3.2 Ac conduction in amorphous semiconductors.	27
1.3.3 Models for ac conduction.	35
1.3.4 Dielectric properties of amorphous	43
semiconductors	
1.3.5 Dielectric loss of amorphous semiconductors.	45
1.4 Switching and memory effects in amorphous	47
chalcogenide semiconductors.	
1.5 Previous works on some glass semiconductors	55
<u>Chapter II</u>	
Experimental Techniques.	
2.1 Synthesis of bulk samples	59
2.1.1 Powder sample preparation	61
2.1.2 Description of the oscillatory furnace	61
2.2 Preparation of thin film samples	62
2.2.1 Cleaning of substrates	62
2.2.2 Evaporation technique	63
2.2.3 Evaporation sources and materials used	63
2.3 Methods for film thickness measurements	66
2.3.1Quartz crystal thickness monitor method	66

Contents

2.3.2 Interferometric method	66
2.4 Structural identification of the investigated	69
compositions	
2.4.1 X-ray diffraction XRD method	69
2.4.2 Differential thermal analysis DTA method	69
2.4.3 Energy dispersive X-ray analysis EDX	73
method	
2.5 Electrical properties measurements	73
2.5.1 Dc conductivity measurements	73
2.5.2 Switching phenomenon measurements	75
2.5.2a Dynamic I-V characteristic curve	75
2.5.2b Static I-V characteristic curve	75
2.5.2c The vertical furnace	79
2.5.3 Ac conductivity and dielectric measurements	79
<u>Chapter III</u>	
Structural Identification, Dc conductivity and	
Switching Phenomenon of	
$Ge_{15}Se_{60}X_{25}$,(X=As,Bi&Sn) Compositions.	
3.1 Structural identification	82
3.1.1 Density of bulk glasses	82
3.1.2 X-ray diffraction XRD analysis of the	82
investigated films	
3.1.3 Energy dispersive X-ray spectroscopy EDX of	84
the investigated compositions	
3.1.4 Differential thermal analysis DTA of the	84
investigated compositions	04
3.2 Electrical properties of Ge ₁₅ Se ₆₀ As ₂₅ ,	90
Ge ₁₅ Se ₆₀ Bi ₂₅ and Ge ₁₅ Se ₆₀ Sn ₂₅ thin films	90
	90
3.2.1 Temperature dependence of the dc	90
conductivity for the investigated films 3.3 Switching properties for the investigated	05
3.3 Switching properties for the investigated	95
films	

Contents

3.3.1 Dynamic and static I-V characteristics	95
3.3.2 Thickness dependence of the mean value of the	97
threshold voltage.	71
3.3.3 Temperature dependence of the mean value of	101
the threshold voltage \overline{V}_{th} .	101
Chapter 4	
Ac Conductivity and Dielectric	
•	
Properties of $Ge_{15}Se_{60}X_{25}$, (X=As or Bi or Sn)	
films.	117
4.1 Ac conductivity.	116
4.1.1 Temperature and frequency	116
dependencies of the ac conductivity for	
the investigated films.	
4.2 Dielectric properties for the investigated	129
films.	
4.2.1 Temperature and frequency	129
dependencies of dielectric constant	
$e_1(W)$ for film compositions.	
4.2.2 Temperature and frequency dependencies of	137
the dielectric loss $\Theta_2(W)$ for $Ge_{15}Se_{60}X_{25}$	107
films $\Theta_2(\mathbf{w})$ for $\Theta_{15} \Theta_{60} \mathbf{X}_{25}$	
HIIIIS	
	1 40
Conclusion	149
Summary	153
References.	157
Arabic Summary	

List of Figures

Subject	Page
Fig.(1.1) : Density of states and mobility as a function of energy in amorphous semiconductors.	20
Fig.(1.2) :Schematic illustration of the temperature dependence of the dc conductivity including four different conduction mechanisms (a, b, c and d).	26
Fig.(1.3) :Schematic illustration of the frequency dependence of ac conductivity including three different conduction mechanisms (a,b and c).	31
Fig.(1.4) : Parameters for the CBH hop between states 1 and 2.	41
Fig.(1.5):I-V characteristic curve for amorphous semiconductor thin film . (a) Threshold switch. (b)) Memory switch	50
Fig.(1.6): (a) The change with time of current passing through a threshold switch using a square wave pulse of duration t , t_d - delay time and t_s -switching time.	51
(b) The relation between current passing through the sample and the corresponding growth of the memory filament.	
Fig. (2.1): Schematic representation for the oscillatory furnace	60
Fig. (2.2): The coating unit. Fig.(2.3): Resistance heaters. Fig.(2.4): [a] Fizeau fringes across a step on the substrate.	64 65 67
[b] Optical system for measuring film thickness.Fig. (2.5): [a] Principle components diagram of the DTA apparatus.	72

Subject	Page
[b] A typical DTA thermogram.	
Fig.(2.6): (a) Arrangement for Aluminum film	74
electrode and silver paste with the	
investigated sample.	
(b): Arrangement for the electrode of thin film	
electrical conductivity measurement	
Fig.(2.7):[a] A schematic representation of the cell used	77
for the I-V measurements.	
[b] The circuit used for measuring the dynamic	78
I-V characteristics	
[c] The circuit used for measuring the static I-V	
characteristics.	
Fig.(2.8): Cut view of the furnace used for switching and	80
bulk resistance measurements.	00
built resistance measurements.	
Fig. (3.1):X-ray diffraction patterns for Ge ₁₅ Se ₆₀ As ₂₅ ,	83
$Ge_{15}Se_{60}Bi_{25}$ and $Ge_{15}Se_{60}Sn_{25}$ film samples of	
nearly the same thickness.	
Fig (3.2a&b): Energy dispersive X-ray analysis EDX for	85
$a-Ge_{15}Se_{60}As_{25}$ and $b-Ge_{15}Se_{60}Bi_{25}$ samples.	
13.4 00 4.25 4.4 4.4 1.5 1.5 1.60 2.5 4.4 1	
Fig (3.2c): Energy dispersive X-ray analysis EDX for	86
$Ge_{15}Se_{60}Sn_{25}$ sample.	
Fig.(3.3a):Differential thermal analysis DTA of	87
$Ge_{15}Se_{60}As_{25}$ samples in powder form.	07
Se ₁₃ Se ₆₀ 16 ₂₃ sumples in powder form.	
Fig.(3.3.b&c):Differential thermal analysis DTA of :b-	88
$Ge_{15}Se_{60}Bi_{25}$ and $c-Ge_{15}Se_{60}Sn_{25}$ samples in	00
powder form	
powder form	
Fig. (3.4a): Temperature dependence of the dc-electrical	92
conductivity for Ge ₁₅ Se ₆₀ As ₂₅ films of different	74
•	
thicknesses.	

Subject Fig. (3.4b) : Temperature dependence of the dc-electrical conductivity for Ge ₁₅ Se ₆₀ Bi ₂₅ films of different thicknesses.	Page 92
Fig. (3.4c) : Temperature dependence of the dc-electrical conductivity for $Ge_{15}Se_{60}Sn_{25}$ films of different thicknesses.	93
Fig. (3.5):(A). Dynamic I-V characteristic curve for Ge ₁₅ Se ₆₀ Sn ₂₅ film of thickness 196.4 nm. (B) Static I-V characteristic curve for Ge ₁₅ Se ₆₀ Sn ₂₅ film of thickness 196.4 nm.	96
Fig. (3.6(a,b&c)): Room temperature I-V characteristic curves of a-Ge $_{15}$ Se $_{60}$ As $_{25}$, b-Ge $_{15}$ Se $_{60}$ Bi $_{25}$ and c-Ge $_{15}$ Se $_{60}$ Sn $_{25}$ of different thicknesses respectively.	98
Fig.(3.7(a,b&c)): Plot of \overline{V}_{th} versus the thickness t for a-Ge ₁₅ Se ₆₀ As ₂₅ , b-Ge ₁₅ Se ₆₀ Bi ₂₅ and c-Ge ₁₅ Se ₆₀ Sn ₂₅ film compositions.	99
Fig.(3.8) : Room temperature I-V characteristic curves for film samples of nearly the same thickness.	100
$\label{eq:Fig.} \textbf{Fig.}(\textbf{3.9(a\&b)})\textbf{:}I\textbf{-}V \ characteristic \ curves \ at \ different \\ temperatures \ for \ Ge_{15}Se_{60}As_{25} \ films \ .$	102
$\label{eq:Fig.} \textbf{Fig.(3.10(a\&b)):} I-V \text{characteristic} \text{curves} \text{at} \text{different} \\ \text{temperatures for $Ge_{15}Se_{60}Bi_{25}$ films} \; .$	103
$\label{eq:Fig. property of Fig. (3.11(a\&b)): I-V characteristic curves at different temperatures for $Ge_{15}Se_{60}Sn_{25}$ films .}$	104
Fig.(3.12(a,b&c)): Plots of \bar{I}_{th} versus T for a-	105

Subject	
$Ge_{15}Se_{60}As_{25}$, b- $Ge_{15}Se_{60}Bi_{25}$ and c- $Ge_{15}Se_{60}Sn_{25}$	
films of different thicknesses.	
Fig.(3.13(a,b&c)): Plots of $\ln \overline{V}_{th}$ versus 1000/T for a-	
$Ge_{15}Se_{60}As_{25}$, $b-Ge_{15}Se_{60}Bi_{25}$ and $c-$	108
Ge ₁₅ Se ₆₀ Sn ₂₅ films of different thicknesses.	
Fig.(3.14(a&b)): Plots of \overline{F}_{th} versus temperature for	110
Ge ₁₅ Se ₆₀ As ₂₅ films of different thicknesses.	
Fig.(3.15(a&b)): Plots of \overline{F}_{th} versus temperature for	111
Ge ₁₅ Se ₆₀ Bi ₂₅ films of different thicknesses.	
Fig.(3.16(a&b)): Plots of \overline{F}_{th} versus temperature for	112
Ge ₁₅ Se ₆₀ Sn ₂₅ films of different thicknesses.	
Fig.(3.17(a,b&c)): Plots of $\ln \overline{P}_{th}$ versus 1000/T for a-	115
$Ge_{15}Se_{60}As_{25}$, $b-Ge_{15}Se_{60}Bi_{25}$ and $c-$	
$Ge_{15}Se_{60}Sn_{25}$ films of different thicknesses .	
Fig.(4.1(a&b)):Frequency dependence of the ac	118
conductivity $s_{ac}(w)$ for $Ge_{15}Se_{60}As_{25}$ films at	
different temperatures.	
Fig.(4.2(a&b)):Frequency dependence of the ac	119
conductivity $s_{ac}(w)$ for $Ge_{15}Se_{60}Bi_{25}$ films at	
different temperatures.	
Fig.(4.3(a&b)):Frequency dependence of the ac	120
conductivity $s_{ac}(w)$ for $Ge_{15}Se_{60}Sn_{25}$ films at	
different temperatures.	
Fig.(4.4(a,b&c)): Temperature dependence of the average	121
value of the frequency exponent \bar{s} for a-	
1 7 1	

 $Ge_{15}Se_{60}As_{25}$, b- $Ge_{15}Se_{60}Bi_{25}$ and c- $Ge_{15}Se_{60}Sn_{25}$

film samples.