

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Production of Anti-rabies Immunoglobulin in Chicken Egg Yolk (anti-rabies IgY)

A thesis submitted by

Lobna Alian Ragheb Abdel-Emam

B.V.Sc., Cairo University, 2009

In partial fulfillment of the requirements for the degree of

Master in Veterinary Medical Sciences, Microbiology

Under the supervision of

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee

Professor of Microbiology and Vice Dean for Graduate Studies and Research Affairs, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Ausama Abdelraouf Abdelmoneim Yousif

Professor of Virology, Faculty of Veterinary Medicine, Cairo University

Dr. Aly Fahmy Mohamed El-Sayed

Head of Research and Development Sector at The Holding Company for Production of Vaccines, Sera and Drugs (VACSERA).

(2017)

Cairo University Faculty of Veterinary Medicine Department of Microbiology

Approval sheet

The examining committee approved **Ms Lobna Alian Ragheb** for the Degree of M.V. Sc in Veterinary Medicine "Microbiology" from Cairo University.

Examining and judgment Committee:

Prof. Dr. Fawzy Revad El Seedy

Prof. of Microbiology, Faculty of Veterinary Medicine, Beni Suef University

Prof. Dr. Wageh Armaniuos Gad Elsayed

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee

Prof. of Microbiology and Vice Dean for Graduate Studies and Research Affairs, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Ausama Abdelraouf Abdelmoneim Yousif

Professor of Virology, Faculty of Veterinary Medicine, Cairo University

Dr. Alv Fahmy Mohamed El-Sayed

Head of Research and Development Sector at The Holding Company for Production of Vaccines, Sera and Drugs (VACSERA)

19/11/2017

Fawzy El Soedy

Supervision Sheet

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee

Professor of Microbiology and Vice Dean for Graduate Studies and Research Affairs, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Ausama Abdelraouf Abdelmoneim Yousif

Professor of Virology, Faculty of Veterinary Medicine, Cairo University

Dr. Aly Fahmy Mohamed El-Sayed

Head of Research and Development Sector at The Holding Company for Production of Vaccines, Sera and Drugs (VACSERA).

Cairo University

Faculty of Veterinary Medicine Department of Microbiology

Name: Lobna Alian Ragheb Abdel-Emam

Nationality: Egyptian
Birth date: 2/6/1987
Place of birth: Cairo
Degree: M.V.Sc.
Specification: Microbiology

Thesis title: Production of Anti-rabies Immunoglobulin in Chicken Egg Yolk

(anti-rabies IgY)

Supervisors:

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee

Professor of Microbiology and Vice Dean for Graduate Studies and Research Affairs, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Ausama Abdelraouf Abdelmoneim Yousif

Professor of Virology, Faculty of Veterinary Medicine, Cairo University.

Dr. Aly Fahmy Mohamed El-Sayed

Head of Research and Development Sector at The Holding Company for Production of Vaccines, Sera and Drugs (VACSERA).

Abstract

Rabies is the most serious and most feared infectious disease affecting human and animals. The currently available types of anti-rabies antibodies have many disadvantages. The present work provides an attempt to produce anti-rabies immunoglobulin in chicken egg yolk. In this study, a total number of 40 egg laying hens were involved where 30 birds were immunized with rabies vaccine and the remaining 10 birds were kept as a control group. Birds have received five doses of the vaccine; the first booster dose was given at one week post 1ry immunization then birds were repeatedly boosted three times at two weeks intervals. Eggs of immunized hens were collected and used for extraction of anti-rabies IgY. Three method of IgY extraction were used; chloroform, poly ethylene glycol (PEG) and chloroform-PEG methods. The three methods were compared in terms of purity and protein content, where chloroform method was found to give the highest protein yield followed by chloroform-PEG and then the PEG method. In SDS-PAGE analysis, PEG and chloroform-PEG methods were found to give better purity than chloroform method. By western blotting, the anti-chicken antibodies specifically detected the heavy and light chains of the IgY only confirming that the majority of the extracted proteins are IgY. By using ELISA, it was confirmed that the prepared IgY antibodies are specific to rabies virus, the anti-rabies antibodies were detected at two weeks post immunization and increased gradually by boostering. In vivo testing of the prepared antibodies revealed that the antibodies could neutralize the rabies virus infectivity in mice experimentally infected with challenge virus standard (CVS). At 9th week post immunization the antibodies could neutralized 100 LD₅₀ of CVS and protected 100% of inoculated mice. ELISA could be used for calculating antibodies titer instead of the currently used neutralization technique after calculating a correction factor between ELISA and neutralization.

Dedication

I dedicate this to my lovely family (mother, father, my sisters Jihan and Asmaa and my brother Mo'taz); Thanks for always being there for me, for your motivation and endless support, for your prayer for my success, for your patience throughout the long period of the research and your confidence and belief in my abilities throughout my life. Thank you, father and mother for teaching me self-confidence and to be a responsible person. God bless you all and give you good health and happiness.

<u>Acknowledgment</u>

All thanks to our merciful God ALLAH; who gave me all good things in my life and who gave me the opportunity, ability and patience to finish this work. And my endless prayer and thanks to the greatest person all over the world, our holy Prophet Muhammad (peace be upon him) who is the teacher and guidance for humanity throughout the ages.

Foremost, I would like to express my sincere gratitude to my advisor and supervisor Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee, Professor of Microbiology and Vice Dean for Graduate Studies and Research Affairs, Faculty of Veterinary Medicine, Cairo University, for the continuous support in my M.D. study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all time of my research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.D. study.

I am grateful to my supervisor, **Prof. Dr. Ausama Abdel-Raoof**Yousif, Professor of Virology, Faculty of Veterinary Medicine, Cairo
University, who gave me the opportunity to do such a research in the
laboratory of virology department and learned me to perform my work
accurately and whose expertise, understanding, generous guidance and
support enabled me to work on a topic that was of great interest to me.

My deep thanks and respect to **Dr. Aly Fahmy Mohamed El-Sayed**, Head of Research and Development Sector at The Holding Company for production of Vaccines, Sera and Drugs (VACSERA), for his scientific guidance, patience and encouragement throughout the research time and for his useful help and advice in the practical work and writing of this thesis.

I would like to express my sincere appreciation to **Dr. Sherif Marouf,** Ass. Prof. of Microbiology, Faculty of Veterinary Medicine, Cairo
University for his help, support and cooperation during this work.

Special loving thanks to my friend, **Doaa Mohammed Abdel-Rady**, biological quality specialist at National Organization for Research and Control of Biologicals, for her help and encouragement to complete this work and her support to pass all hard times and finish my work successfully.

I am heartedly thankful to my colleague Asmaa Ahmed Abd-Elghaffar, biological quality specialist at National Organization for Research and Control of Biologicals, for her generous help in my work. May ALLAH help her in all her life and give her all good things and happiness.

I am so grateful to the members of Microbiology Department, Faculty of Veterinary Medicine, Cairo University, for their help during work.

I am also grateful to the members of applied research lab at VACSERA for their support and cooperation and for providing me with help to perform a part of my research in their Lab.

TABLE OF CONTENTS

1. INTRODUCTION 1 2. REVIEW OF LITERATURE7		
3.1. Materials	45	
3.1.1. Chickens and animals	45	
3.1.2. Vaccine used for immunization of hens	45	
3.1.3. Viruses	45	
3.1.4. Egg samples	46	
3.1.5. Chemicals and buffers used for purification of IgY-		
antibodies	46	
3.1.6. Total protein evaluation	47	
3.1.7. SDS – PAGE		
3.1.8. Western blot technique	48	
3.1.9. Buffers and reagents used for ELISA assay	49	
3.1.10. Reagents used for in-vivo testing		
3.1.11. Equipment and instruments	51	
3.2. Methods		
3.2.1. Immunization of chicken	53	
3.2.2. Separation and storage of egg yolk of immunized hens	53	
3.2.3. Extraction of IgY- antibodies from egg yolk of immunize	ed	
hens by chloroform method	53	
3.2.4. Extraction of IgY- antibodies from egg yolk of immunize	ed	
hens by Polyethylene Glycol method	54	
3.2.5. Extraction of IgY- antibodies by a Chloroform-Polyethyl	ene	
Glycol method	55	

3.2.6. Determination of total protein content of IgY preparations
using Biuret method55
3.2.7. Poly acrylamide gel electrophoresis (SDS-PAGE)56
3.2.8. Western blot analysis of the IgY antibody preparations60
3.2.9. Determination of anti-rabies virus activity of IgY- antibody
preparations using indirect ELISA62
3.2.10. Determination of neutralizing activity of the produced IgY-
antibodies against rabies virus65
3.2.11. Statistical Analysis
4. RESULTS70
5. DISCUSSION89
6. SUMMERY AND CONCLUSION106
7. REFERENCES111
الملخص العرب

LIST OF ABBREVIATIONS

ARS	Anti-Rabies Serum
BSA	Bovine serum albumin
CCEEVs	Cell Culture Vaccines and Embryonated egg- based vaccines
CDC	Centers for Disease Control and Prevention
CNS	Central nervous system
CVS	Challenge virus standard
DAB	3,3'-diaminobenzidine
DRG	Dorsal root ganglion
ED ₅₀	Median effective dose
ELISA	Enzyme linked immune sorbent assay
ERIG	Equine rabies immune globulin
FAT	Fluorescent antibody test
FBS	Fetal bovine serum
FCS	Fetal calf serum
FRV/K	Fixed rabies virus/Karamany
G	Glycoprotein
HDCV	Human diploid cell vaccine

HRIG	Human rabies immune globulin
HRP	Horse radish peroxidase
IgY	Immunoglobulin of yolk
ID	Intra dermal
IM	Intra muscular
L	Large protein (RNA Polymerase)
LD ₅₀	Median lethal dose
M	Matrix protein
MEEREB	Middle East and Eastern Europe rabies Expert Bureau
mRNA	Messenger Ribonucleic Acid
N	Nucleoprotein
NFDM	Non-fat dry milk
NIBSC	National Institute for Biological Standards and Control
NIH	National Institutes of Health
OD	Optical density
P	Phosphoprotein
PBS	Phosphate buffered saline

PEG	Polyethylene glycol
PEP	Post-exposure prophylaxis
PD	Proportional distance
RIG	Rabies Immunoglobulin
RNA	Ribonucleic Acid
RNP	Ribonucleoprotein
RT	Room temperature
RV	Rabies virus
RVA	Rabies vaccine adsorbed
SC	Sub coetaneous
SD	Standard deviation,
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEA	Southeast Asia
TEMED	Tetramethylethylenediamine
TPC	Total protein content
TPI	Time post immunization
VACSERA	The Holding Company for Production of Vaccines, Sera and Drugs.
WHO	World health organization

LIST OF TABLES

Table (1): Timetable of bat transmitted human rabies in Latin
America from the literature and official country data from Ministries
of Health of Brazil and Peru
Table (2): Rabies epidemiology and management in the 7 countries
represented at MEEREB. 17
Table (3): Reported rabies cases in humans and animals, North
Africa, 2000–2009
Table (4): Rabies free countries and territories
Table (5): Rabies virus geographic and host range with genotype23
Table (6): Total protein content determination using Biuret method.
Table (7): Total protein content in IgY- antibody preparations
extracted by chloroform method at different time intervals post
immunization
Table (8): Total protein content of IgY- antibody preparations
extracted by Chloroform, Poly Ethylene Glycol and Chloroform/PEG
methods at the 10 th week post immunization
Table (9): Anti-Rabies virus antibodies levels in chloroform
extracted IgY-antibody preparations measured with indirect ELISA at
different time intervals post immunization
Table (10): Survival rates in mice inoculated with 100 LD_{50} of rabies
virus (CVS strain) and serially diluted IgY- antibodies extracted from
eggs collected from vaccinated hens at 10 th week post immunization.
85
Table (11): Surviva0l rates in mice inoculated with 100 LD_{50} of
rabies virus (CVS strain) and IgY- antibodies extracted from eggs
collected from vaccinated hens at different time intervals post
immunization

LIST OF FIGURES

Fig. (1): Longitudinal diagram of rabies virus showing bullet-shaped
with 10-nm spike-like glycoprotein peplomers covering the surface10
Fig. (2): The cross-sectional diagram demonstrates the concentric
layers: envelope membrane bilayer, M protein, and tightly coiled
encased genomic RNA10
Fig. (3): The rabies virus genome
Fig. (4): The Cycle of infection and replication
Fig. (5): Distribution of risk level of humans contacting rabies,
worldwide, 2013 20
Fig. (6): Rabies reservoirs around the world
Fig. (7): Viral pathway to the spinal cord. The cell bodies of the
peripheral sensory pseudo bipolar (unipolar) neurons in the dorsal root
ganglion (DRG) have two axons and no dendrites. Retrograde
transport is from the axon terminal towards the cell body26
Fig. (8): Course of rabies transmission. The first step is the
transmission of the disease following exposure. The incubation period
varies greatly. It ends when the virus begins to spread from the bite
site to the surrounding peripheral nerves
Fig. (9): Natural history of rabies in humans. Hypothetical composite
case, not all clinical abnormalities are necessarily present in every case
29
Fig. (10): severe facial lacerations in a child caused by dog bites.
Children are frequently victims of dog bites. facial bites usually result
in much shorter rabies incubation periods30
Fig. (11): A child appeared to be thirsty but pushed the glass
away when water was offered. Such behavior is referred to as
hydrophobia30
Fig. (12): A child with rabies showing marked Anxiety31

Fig. (13): Generalized seizures are seen in pre-terminal rabies.
Seizures may be elicited by sensory stimuli such as air movement,
sound and attempts to drink
Fig. (14): Aggressive behavior in unusual circumstances is well
documented in domestic and wild animals infected with rabies virus.34
Fig. (15): Paralytic rabies in a dog that is salivating profusely34
Fig. (16): Knuckling fetlocks and hind-quarter paralysis in a bovine.34
Fig. (17): Continuous bellowing is well documented in cattle35
Fig. (18): The total protein content of chloroform extracted IgY
preparations obtained from egg yolk of immunized hens during and
after immunization
Fig. (19): The total protein content of IgY preparations extracted by
Chloroform, Poly Ethylene Glycol and Chloroform/PEG methods at
the 10 th week post immunization
Fig. (20): The SDS-PAGE analysis of IgY preparations extracted by
different extraction methods
Fig. (21): The western blot analysis of the prepared IgY
Fig. (22): The increase of the specific antibodies level in IgY
preparations extracted by chloroform method after immunization80
Fig. (23): Antibody response to rabies vaccine measured by indirect
ELISA in IgY antibody preparation compared to positive and negative
controls82
Fig. (24): Standard calibration curve of Human anti-rabies
immunoglobulin concentration for determination of chicken anti-rabies
IgY concentration83
Fig. (25): Survival rates in mice inoculated with rabies virus and
serially diluted IgY- antibody extracted from eggs collected from
vaccinated hens at 10 th week post immunization compared to positive
and negative controls
Fig. (26): Survival rates in mice post inoculation with CVS strain of
rabies virus and anti-rabies IgY