

معامل النمو المشابه للانسولين-1, الكوليستيرول وبعض المعادن كدلالات لتسرطن الكبد في المرضى المصريين المصابين بالالتهاب الكبدي الوبائي سي

رساله مقدمة من الطالبة سع العالم المعد الدين سيد عبده ماجستير الكيمياء الحيوية (2012) مدرس مساعد قسم الكيمياء الحيوية كلية العلوم- جامعة عين شمس للحصول على درجة دكتوراه الفلسفة في الكيمياء الحيوية

تحت إشراف

أ.د. إيمان محمود فتحي بركات أستاذ الأمراض المتوطنة قسم الباطنة كلية الطب-جامعة عين شمس

أ.د.نادية يوسف صادق مرقس أستاذ الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم-جامعة عين شمس

د. رشا الشريف حسن إبراهيم مدرس الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم-جامعة عين شمس

أ.د.م. ماجدة كمال عز أستاذ الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم-جامعة عين شمس

قسم الكيمياء الحيوية كلية العلوم- جامعة عين شمس 2017

Insulin like growth factor-1, cholesterol, and some metals as markers for hepatocarcinogenesis in Egyptian patients with hepatitis C infection

A thesis submitted by Soha Saad El-Din Sayed

M.Sc. in Biochemistry (2012)
Ass. Lecturer of Biochemistry
Faculty of Science - Ain Shams University

Under Supervision of

Dr. Nadia Y.S. Morcos

Prof. of Biochemistry
Faculty of Science
Ain Shams University

Dr. Magda K. EZZ

Prof. of Biochemistry
Faculty of Science
Ain Shams University

Dr. Eman M. F. Barakat

Prof. of Tropical Medicine Faculty of Medicine Ain Shams University

Dr. Rasha E. Hassan

Lecturer of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2017

Insulin growth factor-1, cholesterol, and some metals as markers for hepatocarcinogenesis in Egyptian patients with hepatitis C infection

Board of scientific Supervision

Dr. Nadia Y.S. Morcos

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Eman M. F. Barakat

Professor of Tropical Medicine Faculty of Medicine Ain Shams University

Dr. Magda K. Ezz

Professor of Biochemistry Faculty of Science Ain Shams University

Dr. Rasha El Sherif Hassan

Lecturer of Biochemistry Faculty of science Ain Shams University

ACKNOWLEDGEMENTS

I thank Almighty God for giving me the courage and determination, in conducting this research study, despite all difficulties.

I would like to express my huge gratitude to my supervisor, Prof. Dr. Nadia Sadek Morcos, Professor of biochemistry, Faculty of science, Ain Shams university. You were so wonderful to me; you made me believe that I had so much strength and courage to persevere even when I felt lost.

I would like to thank Prof. Dr. Iman Barakat, Professor of Tropical medicine, Faculty of medicine, Ain Shams university, for her guidance during samples collection. It was a pleasure working with her.

I owe a deep sense of gratitude to Dr. Magda K. Ezz, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her keen interest on me. Her prompt inspirations have enabled me to complete my thesis.

I am deeply indebted to **Dr. Rasha El Sherif Hassan, Lecturer of Biochemistry, Faculty of science, Ain Shams university,** for her generosity. You were such wonderful motivators even when the coping seemed tough for me. I aspire to emulate you.

Finally, I extend warm thanks to all my colleagues and friends who assisted, encouraged and supported me during this research.

Declaration

This thesis has not been submitted for a degree at this or any other university.

Soha Saad El Din Sayed Abdou

Faculty Of Science, Ain Shams University. Biochemistry Department.

Biography

Name: Soha Saad El Din Sayed Abdou.

Date of Graduation: June 2012, Faculty of Science,

Biochemistry Department,

Ain Shams Univeristy.

Degree awarded: MS. Sc. in Biochemistry.

Occupation: Assistant lecturer in Biochemistry

Department, Faculty of science,

Ain Shams Univeristy.

Dedication

This work is dedicated to my lovely Family. Thank you for your unconditional support with my studies and for giving me a chance to prove and improve myself.

TABLE OF CONTENTS

Content list	Page no.
Abstract	i
List of Figures	iii
List of Tables	ix
List of Abbreviations	xi
Introduction	xviii
Aim of work	xix
1-Review of Literature	1
1.1. Hepatitis C virus	2
1.1.1. HCV genome, proteins, and life cycle	3
1.2. Hepatocellular carcinoma (HCC)	9
1.2.1. Etiology of HCC	10
1.2.2.Tumor microenvironment in HCC	11
1.3. Hepatitis C virus carcinogenesis	16
1.3.1. HCV proteins and the oncogenic	18
processes	
1.3.2. HCV Non-structural proteins	20
1.4. Immune-mediated liver alterations in	24
HCV-induced HCC	
1.5. Metabolic alterations in HCV-induced	26
HCC	
1.5.1 Steatohepatitis and lipid metabolism	29
1.5.2 Diabetes & Insulin resistance (IR)	34
1.5.3. Insulin-like growth factor-1(IGF.1)	40
1.5.4 Leptin	44
1.5.5 Chronic inflammation and systemic	49
oxidative stress	
1.5.6 Inorganic elements	52
1.6. HCC screening tools	62
1.6.1. Ultrasound (US)	63
1.6.2. Computed tomography (CT)	63
1.6.3. Magnetic resonance imaging (MRI)	63

1.6.4. Histological tools	64
1.6.5. Serological techniques	64
(Biomarkers)	
2-Subjects and Methods	67
2.1. Subjects	67
2.2- METHODS	70
2.2.1. Complete blood picture (CBC)	70
2.2.2. Prothrombin time (PT) and	70
international normalized ratio (INR)	
2.2.3. Alanine aminotransferase (ALT)	71
2.2.4. Aspartate Transaminase (AST)	72
2.2.5. Alkaline phosphatase (ALP) activity	73
2.2.6. Gamma Glutamyl transferase (GGT)	74
2.2.7. Total proteins in serum	74
2.2.8. Albumin in serum	75
2.2.9. Total Bilirubin	76
2.2.10. Alpha-fetoprotein (AFP)	77
2.2.11. Calculations of fibrosis markers	78
2.2.12. Total cholesterol	80
2.2.13. Triglycerides (TG)	81
2.2.14. High-density lipoprotein cholesterol (HDL)	82
2.2.15. Glucose level in serum	83
2.2.16. Insulin level in serum	84
2.2.17. Insulin resistance (IR) by the	86
homeostasis model assessment	
(HOMA)	
2.2.18. Insulin-like growth factor I (IGF-I)	86
2.2.19. Leptin	88
2.2.20. Total antioxidant capacity (TAC)	89
2.2.21. Inorganic trace elements (Zinc	90
&Copper)	
2.2.22. Serum Ceruloplasmin	92
2.2.23. Iron in serum	93

2.2.24. Total iron binding capacity (TIBC)	94
2.2.25. Serum Ferritin	94
2.2.26. Serum Creatinine	96
2.3. Statistical analysis	97
3-Results	98
4-Discussion	146
5-References	186
Summary and conclusion	223
Arabic summary	227
Arabic abstract	231

Abstract

Background: The prevalence of serological markers of viral hepatitis C (HCV) infection in patients with hepatocellular carcinoma (HCC) is nearly 80%. However, the differential diagnosis between chronic hepatitis C (CHC) and HCC in early stages is a challenge. Manifestation of the malignant potential of the neoplastic cell requires cellular metabolic alterations to provide the bioenergetic, synthetic, and catabolic requirements of malignancy.

Aim: To investigate the direct and indirect metabolic effects of HCV on glucose homeostasis, lipid profile, iron overloading profile, zinc, and copper, and their relation to the development of HCC.

Subjects: Sixty non-diabetic male patients with CHC, were included in this study, 30 of them with proven diagnosis of HCC. Twelve matching healthy subjects were chosen as control group.

Methods: Routine blood tests included blood picture, liver function panel, lipid profile, glucose homeostasis, and markers of metabolic alterations (including IGF-1, Leptin, and TAOC), inorganic elements, and creatinine.

Abstract

Results: All patients showed higher Homeostasis model assessment for insulin resistance (HOMA-IR), liver enzymes, bilirubin, creatinine, leptin, iron, and ferritin, compared to controls. Markers that significantly differentiated HCC from HCV (from ROC curve) were an increase in Cu/Zn ratio, AFP, IGF-1 and Forns index, and a decrease in zinc, albumin, A/G ratio and leptin.

Conclusion: The overall metabolic alterations during HCV infection play an essential role in carcinogenesis. In addition, the global changes of metabolites that arise during, or as a consequence of tumorigenesis, could measure both the presence and the severity of disease. Association of decreased leptin and Zn, with increase in IR, Cu/Zn ratio and IGF-1 indicates HCC development. Therefore, the utility of these simple, non-invasive, potential biomarkers as predictors for HCC development could be valuable in Egyptian chronic HCV patients.

Key words: Hepatocellular carcinoma, chronic hepatitis C, insulin resistance, insulin like growth factor-1, copper, leptin, and zinc

LIST OF FIGURES

Figure	Title		
number			
Fig. (1.1)	Natural history and biological processes in		
	HCV-induced HCC development		
Fig. (1.2)	Evolutionary tree of the seven genotypes and		
	all known subtypes of hepatitis C virus		
Fig. (1.3)	HCV viral genome structure	4	
Fig. (1.4)	Life cycle of hepatitis C virus in the	8	
	hepatocyte.		
Fig. (1.5)	Natural history of HCC demonstrating the	11	
	journey of a liver as it goes through cirrhosis,		
	dysplasia, carcinoma, and multifocal cancer.		
Fig. (1.6)	A simplified network of liver	12	
	microenvironmental factors and their roles in		
	HCC tumor progression and maintenance.		
Fig. (1.7)	Pathways of hepatic stellate cell activation		
	and loss during liver injury and resolution.		
Fig. (1.8)	HCV-related mechanisms of carcinogenesis:		
	from HCV infection to HCC.		
Fig. (1.9)	Cellular signaling pathways implicated in	19	
	hepatitis C virus (HCV) core protein-related		
	hepatocarcinogenesis.		
Fig.(1.10)	Hepatitis C virus and hepatocarcinogenesis	22	
Fig.(1.11)	Molecular pathogenesis of HCC in HCV	23	
	infection.		
Fig.(1.12)	Pathogenetic effects and outcomes of HCV	26	
	infection		
Fig.(1.13)	Hepatitis C virus-associated metabolic	27	
	alterations in the hepatocyte, data from		
	bench studies.		