

ثبكة المعلومات الجامعية

Cierla Territa Con

ثبيكة المعلومات الجامعية

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار % 40-20 مثوية ورطوبة نسبية من 20 – 40 مثوية ورطوبة نسبية من 15 – 50 مثوية ورطوبة نسبية من 20-40 % To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

نبكة المعلومات الجامعية

ثبكة المعلومات الجامعية

DEVELOPMENT OF A SOLAR COOKER FOR DRYING USING SOLAR ENERGY

Ву

Yousri Ahmed Habib Esmail

B.Sc. (Mech. Eng.) Helwan University, 1983

M.Sc. (Ag. Eng.) South Dakota State University, USA, 1994

A thesis submitted for Doctor of Philosophy
in
Environmental Science

Department of Engineering Science
Institute of Environmental Studies & Research
Ain Shams University

B

0099

APPROVAL SHEET

DEVELOPMENT OF A SOLAR COOKER FOR DRYING USING SOLAR ENERGY

By

Yousri Ahmed Habib Esmail

B. Sc. (Mech. Eng.), Faculty of Engineering, Helwan University, (1983)M. Sc. (Agri. Eng.), South Dakota State University, U.S.A.(1994)

This Thesis for Ph. D. Degree in Environmental Science has been approved by:

Name 🗀

1- Prof. Dr. / Salah Mahmoud El-Haggar

Professor of Energy & Environment - Mechanical Engineering Department.

The American University in Cairo.

2- Prof. Dr. / Ahmed Farid El-Sahrigi
Professor of Agricultural Processing Engineering, Faculty of Agriculture, Ain Shams University

3- Prof. Dr. / Morad Abdel Kader Abdel Mohsen

Prof. of Architecture Engineering And Environmental Control, Vice-President of Ain Shams University for Community and Environmental Affairs.

4- Prof. Dr. / Yehia Abdel Razik Heikal

Professor of Food Technology, Faculty of Agriculture, Ain Shams University

Charles to the second second

១ទូនី២.៤៤

e de la composición dela composición de la composición dela composición de la composición de la composición dela composición dela composición de la composición de la composición dela composición dela composición dela composición dela composición

, .

ر م

3,110

Yelino Herral

DEVELOPMENT OF A SOLAR COOKER FOR DRYING USING SOLAR ENERGY

By

Yousri Ahmed Habib Esmail

B. Sc. (Mech. Eng.), Faculty of Engineering, Helwan University, (1983)M. Sc. (Agri. Eng.), South Dakota State University, U.S.A.(1994)

A Thesis Submitted for Doctor of Philosophy

in

Environmental Science Department of Engineering Science

Under The Supervision of:

- 1- Prof. Dr. / Morad Abdel Kader Abdel Mohsen
 Prof. of Architecture Engineering And Environmental Control, Vice-President
 of Ain Shams University for Community and Environmental Affairs.
- 2- Prof. Dr. / Yehia Abdel Razik Heikal Professor of Food Technology, Faculty of Agriculture, Ain Shams University
- 3- Dr. / Sherif Hady Taher

 Assistant Professor of Mechanical Engineering, Zagazig University,

 Banha Branch

<u>ABSTRACT</u>

Yousri Ahmed Habib Esmail, studies on "Development of a Solar Cooker for Drying Using Solar Energy", Unpublished Ph. D., Ain Shams University, Institute of Environmental and Research (2002).

The main objectives of this study are constructing and testing a new design of the solar cooker. The cooker was designed as semi-circle shape and fabricated from wood and the absorber plate made of aluminum sheet. The effect of some factors such as number of glass covers, plane reflector and tilt angle on the cooker performance were studied. Doubling the glass cover increased the temperatures inside the cooker and extended the water-boiling period to 2 hours. The absorber plate temperature increased from 107°C to 127°C when plane reflector was used. In order to accelerate the cooking process, contour maps indicate the temperature distribution inside the cooker were introduced in the present work. Analyzing these maps can help determining the appropriate placement for cooking pots and usefulness of the highest temperature locations. Energy balance equations of the cooker and its components were introduced. Thermal heat exchange among surfaces depends on geometry and orientation of these surfaces, so shape factor was introduced in this work. Economic study on the cooker was carried out and comparison of the solar cooker operational cost with traditional gas cooker was established. Constructing air inlet and outlet gates in order to be used as drier, drying tests on some agricultural products were conducted. The drying cost of some agricultural products was calculated and the drier contour maps were introduced. The effect of using the solar cooker on the environmental protection from fossil fuels exhausts was estimated.

5.1.

, i "] , . . .

Ċ.

Appropriate distriction of the control of the contr

. .

.

•

ACKNOWLEDGMENT

The author wishes to thank "Allah" for allowing him to complete this work. He wishes also to express his greatest appreciation and deepest gratitude to Prof. Dr. Morad Abdel Kader, Prof. Dr. Yehia Abdel Razik Heikal and Dr. Sherif Hady Taher for their supervision, guidance and constructive criticism through carrying out the work presented in this thesis.

He wishes to express his appreciation to his family and to every-one who supports and encourages him through this work.

CONTENTS

Subject	P
ACKNWOLEDGMENT	
ABSTRACT	
CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
NUMENCALTURE	
INTRODUCTION	BECOTES
1. REVIEW OF LITERATURE	
1-1 Environmental pollution	
1-2 Effect of air pollution	
1-3 Indoor air pollution	
1.4 Solar energy	
1.5 Application of solar energy	
1.5.1 Solar cooker	***
1.5.2 Solar cookers types	
1.5.3 Cooking temperature and time	
1.5.4 Solar cooker energy balance equations	
1.5.5 Shape factor	
1.5.6 Thermal evaluation of the solar cooker	
1.6 Solar dryers	
1.6.1 Advantages of solar crop drying	
1.6.2 Solar drying systems	
A. Direct system	
B. Indirect system	
C. Mixed Mood (indirect & direct)	·
1.6.3 Moisture content and temperature of drying	
1.6.4 Air movement	
1.6.5 Drying time	