

Medical Studies Department Institute of Postgraduate Childhood Studies

Phenotype-Genotype Variation In a Sample of Egyptian Patients with Uncommon Beta Thalassemia Mutations

Thesis submitted for fulfillment of requirements of Ph.D. degree in Medical Childhood Studies

Submitted by

Mohamed Hamdy Abd El-Latif Ghandour

M.Sc. in Pediatrics, Cairo University

Supervised By

Prof. Dr. Magdy Karam Eldin Aly	Prof. Dr. Randa Kamal Abd El Raouf
---------------------------------	------------------------------------

Professor of Public Health
Professor of Pediatrics
Department of Medical Studies
Department of Medical Studies
Institute of Postgraduate Childhood
Studies
Studies
Studies

Prof. Dr. Ghada Yousef Elkamah

Professor of Clinical Genetics
National Research Center

Prof. Dr Khalda Elsayed Mohamed

Professor of Molecular Genetics
National Research Center

2015

DEDICATION

This thesis is dedicated to all Thalassemic patients with lots of love and lots of prayers.

ACKNOWLEDGMENTS

- ➤ I would like to acknowledge the Medical Studies department Institute of Postgraduate Childhood Studies as well as the Clinical Genetics department, National Research center for their great support during this study.
- ➤ In order to accomplish this study, I had support from many people. Therefore I would like to express my sincere thanks to them.
- ➤ First of all I want to express my sincere thanks to **Prof. Dr Magdy Karam Eldin Aly** Professor of Public Health -The Department of

 Medical Studies Institute of Postgraduate Childhood Studies for his

 Guidance and supervision.
- ➤ I will be always grateful to **Prof. Dr Randa Kamal Abd El Raouf**Professor of Pediatrics -Department of Medical Studies Institute of
 Postgraduate Childhood Studies. There are no words can express my deep
 appreciation and thanks for her guidance, providing facilities, and
 continuous encouragement to bring the best in me.
- ➤ My deepest thanks and appreceiation to **Prof. Dr Ghada Yousef El kamah** Professor of Clinical Genetics -National Research Center for her helpful discussion, guidance, close supervision and massive input.
- ➤ I will be always grateful to **Prof. Dr Khalda Elsayed Mohamed** of the molecular Genetics department at the national research center for making me feel welcomed and for providing a kind, stress free, helpful work environment.
- ➤ My thanks extend also to **Prof. Dr Ahmed Ibrahim Samy Al-Katoury** Professor of Clinical Genetics -National Research Center for his Guidance and supervision
- ➤ My thanks extend also to A. Professor of Pediatrics at the Institute of Postgraduate Childhood Studies **Dr.Ayman Mohamed Nada** for his great support.
- ➤ I am also thankful for all those who helped me in collecting the blood sample and clinical data from thalassamia patients In NRC
- Finally I want to thank my family for being a source of continuous help and support and my gratitude for their endless patience that enabled me to complete this project.
- ➤ My deepest appreciation goes to all my dear friends for their kindness, help and wonderful friendship.

ABSTRACT

Background: Beta-thalassemias represent a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. Three main forms have been described: Thalassemia major, Thalassemia intermedia and Thalassemia minor. In each population only a few common mutations in the β globin have been found to be responsible for β -thalassemia, which indicate population differences. In Egypt β - thalassemia occurs in high frequency and premarital screening has been implemented for this disorder. Few comprehensive mutational screening for the β -globin gene locus has been carried so far in Egypt.

Objective: This study was designed with the objective to sequence the β -globin gene in β -thalassemia patients with uncommon mutations among Egyptian population and to investigate the genotype phenotype correlation.

Subjects and Methods: 30 β -thalassemia patients were enrolled in the study and hematological and biochemical data were recorded after full clinical evaluation, DNA was extracted and the β -globin gene was sequenced.

Results: Direct sequencing of the β -globin gene identified a total of 9 previously reported point mutations. β -thalassemia patients were either homozygous, heterozygous or compound heterozygous for those mutations,

Conclusion: this study characterizes some of the uncommon mutations and variants in the β -globin gene in Egypt and correlate between the genotypes and the phenotypes of the cohort of patients enrolled.

Recommendations: Sequencing of more Beta thalassemia Patients whose mutations couldn't be identified by Regular methods to establish a beta globin gene database specicifc for Egyptian population

Keywords: Beta Thalassemia –DNA sequencing –Molecular Charcterization

CONTENTS

		Page
		number
Abbreviations		6
List of Figures		8
List of Tables		9
Introduction		12
Aim of the Study		15
	Definition and classification	17
	 Prevalence 	18
	 Pathophysiology 	20
	 The Molecular Basis of Thalassemia 	28
	• Variants of β thalassemia	35
Review of literature	Modes of inheritance.	41
Review of interacture	Clinical classification	47
	Complications	49
	Investigations	52
	Genotype-Phenotype Correlations	59
	Treatment & Chelation	65
	 Prevention 	69
Subjects and Methods		74
Results		84
Discussion		104
Summary		116
Conclusion		119
Recommendations		121
References		123
Arabic Summary		151

ABBREVIATIONS

- **ALT:** Alanine Aminotransferase
- **ARMS**: Amplification refractory mutation system
- **AST:** Aspartate Aminotransferase
- **BMT**: Bone Marrow Transplantation
- **BP:** Base pair
- CO: Carbon monoxide
- CO2 : Carbon dioxide
- **DBil**: Direct bilirubin
- **DNA:** DeoxyribonucleicAcid
- **DNase**: Deoxyribonuclease
- **dNTP:** Deoxy Nucleotide Triphosphate
- **G-WAS**: Genome-wide association studies
- **H2A:** Ascorbic Acid
- **Hb**:Haemoglobin
- **HbA:** Normal Adult Hemoglobin
- **HbA2:** Minor Adult Hemoglobin
- **HBB:**human hemoglobin β gene
- **HbF:** Fetal hemoglobin
- **HCT:** Hematocrit
- **HGMD:** Human Genome Mutation Database
- **HLA:** Human Leukocytoe Antigen
- hnRNA: Heterogeneous nuclear RNA
- **HPFH**: Heterocellular persisitence of fetal hameoglobin
- **HPLC:** High performance liquid chromatography
- **HS1-5:** Hypersensitive site 1-5
- **IVS:** Intervening Sequence
- LCR: Locus Control Region
- MCH: Mean corpuscular hameoglobin
- MCHC:Mean corpuscular hameoglobin concentration
- MCV: Mean corpuscular volume
- mRNA: Messenger RNA
- **NESTROF**: Naked eye single tube Red cell Osmotic fragility test
- NO: Nitric oxide
- **O2** : Oxygen
- **OMIM**: Online mendelian inheritance in man
- **PCR**: Polymerase chain reaction
- **PCV**: Packed cell volume
- **PRE:** Positive regulatory element

• QTLs :Quantitative trait loci

• **RBC**: Red blood cells

• **RDB:** Reverse Dot Blot

• RDW: Red Cell Distribution Width

• **RE:** Restriction Enzyme

• **RFLP** Restriction Fragments Length Polymorphism

• RNA: Ribonucleic Acid

• **Rpm:** Revolution per Minute

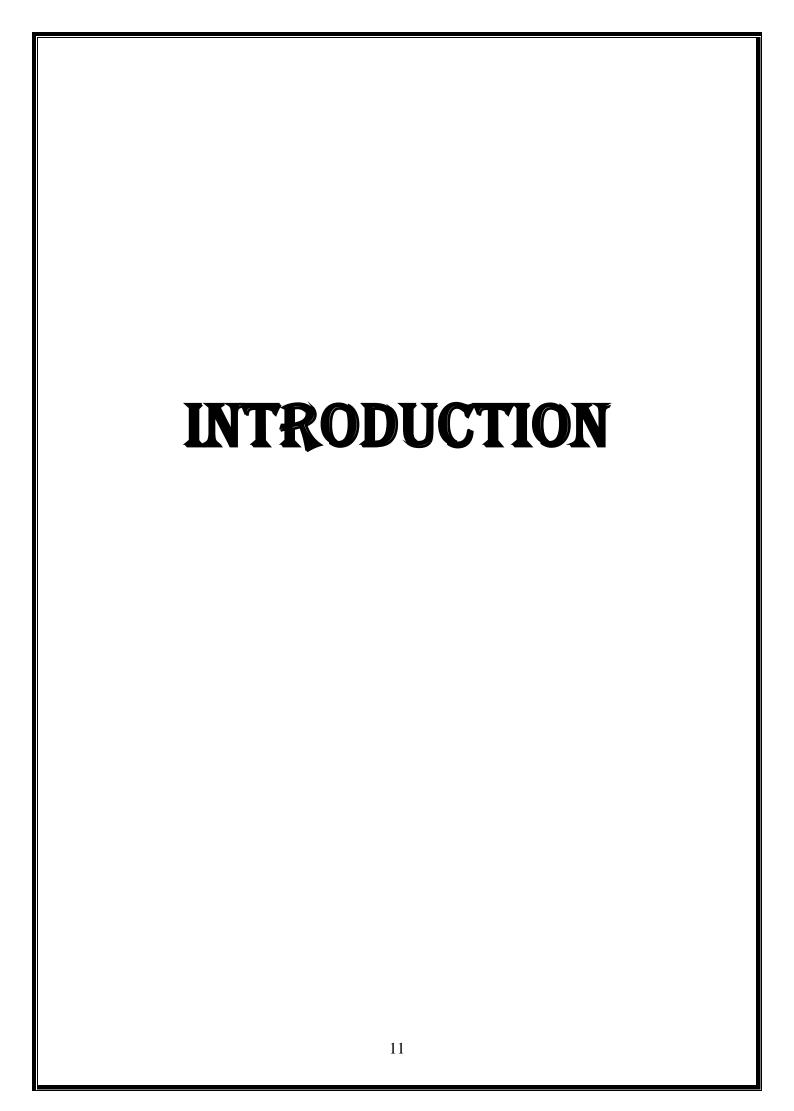
• SCD: Sickle Cell Disease

• **SNP:** Single Nucleotide Polymorphisms

• **TBE:** Tris Borate EDTA buffer

• TBil: Total bilirubin

• UTR: Untranslated Region


LIST OF FIGURES

	Page
	number
Figure (1) Global Distribution of Hemoglobin Disorders. In terms	18
of birth affected infants per 1000 births	
Figure (2): The structure of hemoglobin (Hb).	20
Figure (3) Expression of human globin genes during development at different sites of erythropoiesis	22
Figure (4) Globin genes	23
Fig (5) The complete DNA sequence of the human hemoglobin gene (HBB)	24
Figure (6) The β globin gene Cluster	25
Figure (7) Most common beta-thalassemia mutations in different Mediterranean region	32
Figure (8) Most common beta-thalassemia mutations in Asian region	33
Figure (9) Autosomal recessive inheritance in beta thalassemia	42
Figure (10) Pathophysiology of β Thalassemia	44
Figure (11) Treatment and Complications of beta thalassemia	50
Figure (12) General view of a gene-therapy approach for β -thalassemia.	68
Figure (13): Flowchart for Thalassemia carrier identification.	72
Figure (14): Percentage of studied mutant alleles	85
Figure (15): Partial sequence of β globin gene PCR fragment, showing sequences IVS II.I mutation.	88
Figure (16): sequence of β globin gene PCR fragment to detect the IVSI-5 (G>C) mutation	88
Figure (17) : sequence of β globin gene PCR fragment to detect the Cd28 (-C) mutation	89
Figure (18): Phenotype Mean Score of our studied Cases	102

LIST OF TABLES

	Page
	number
Table (1): Summary of predominant human haemoglobins at different	22
stages.	
Table (2) Type and Number of Mutations Reported In The β -globin Gene (Reported in HGMD Database).	32
Table (3) : Mild and silent <i>HBB</i> gene mutations causing betathalassemia	34
Table 4) Genetic Basis and Clinical Manifestations of Common β Thalassemia Syndromes.	46
Table (5): Clinical and haematological characteristics of β-thalassemias.	47
Table (6) Pehnotypic scoring of beta thalassemia	51
Table (7) Red blood cell Indices in B -Thalassaemia	53
Table (8) Haemoglobin Patterns in B –Thalassaemia	54
Table (9) Summary of Molecular Genetic Testing Used in Beta- Thalassemia	57
Table (10): Heterozygous beta-thalassemia: phenotype modification	63
Table (11): Beta Globin Mutations amonge our studied group	90
Table (12): Genotype Phenotype Correlation among patients with <i>Cd27 (G>T)</i> mutation	93
Table (13): Genotype Phenotype Correlation among patients with <i>Cd39 (C>T)</i> mutation.	94
Table (14): Genotype Phenotype Correlation among patients with –87 (<i>C>G</i>) mutation.	95
Table (15): Genotype Phenotype Correlation among patients with <i>Cd5</i> (- <i>CT</i>) mutation.	96

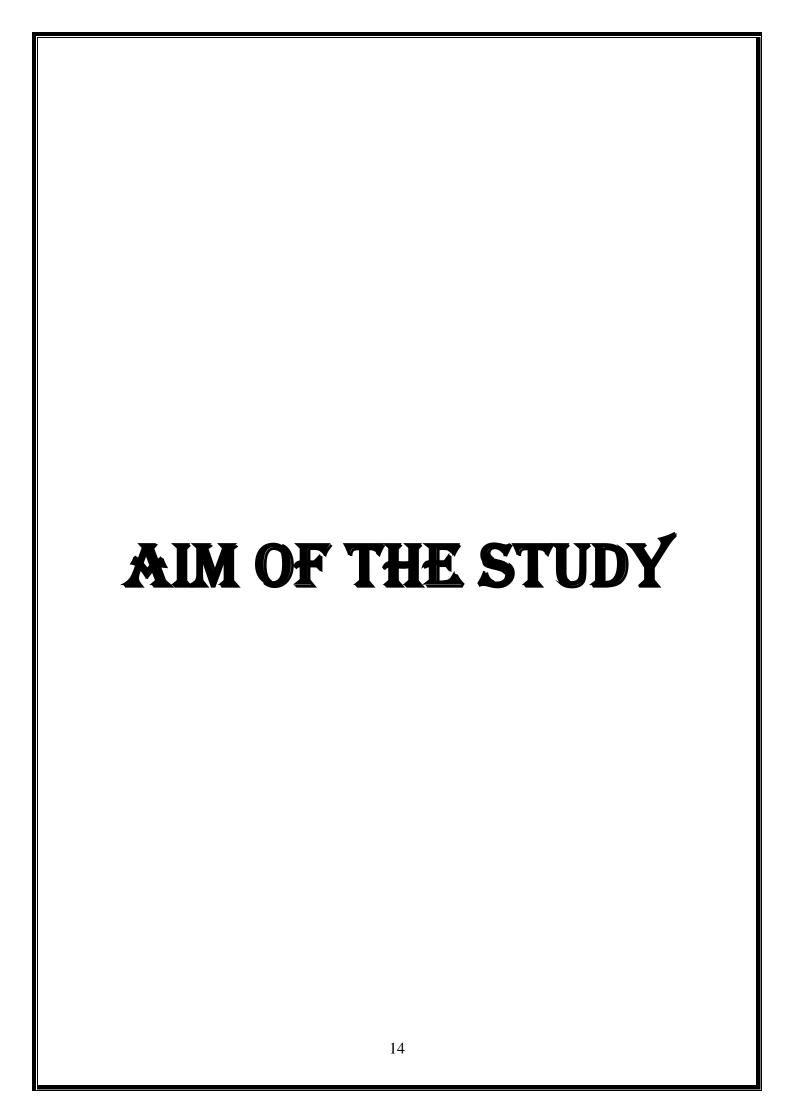
Table (16): Genotype Phenotype Correlation among patients with	97
IVSI-5 (G>C) mutation.	
Table (17): Genotype Phenotype Correlation among patients with	98
IVSII-1 (G>A) mutation.	
Table (18): Genotype Phenotype Correlation among patients with	99
<i>Cd44 (−C)</i> mutation.	
Table (19): Genotype Phenotype Correlation among patients with	100
<i>Cd28 (−C)</i> mutation.	
Table (20): Genotype Phenotype Correlation among patients with	100
-101 (C>T) mutation.	
Table (21): The Hemoglobin Electrophoresis among our studied cases	
	101
Table (23): Phenotype Mean score for each mutation among our	
studied cases	102

Introduction

Beta-thalassemia syndromes are a group of hereditary blood disorders characterized by reduced or absent beta globin chain synthesis, resulting in reduced Hb in red blood cells (RBC), decreased RBC production and anemia. Most thalassemias are inherited as recessive traits. According to *Galanello et al*, (2010) beta-thalassemias can be classified into:

- Thalassemia major
- Thalssemia intermedia
- Thalssemia minor

Haemoglopinopathies represent the most common genetic disorders Worldwide (*Bournazos et al.*, 2007; Sankaran et al., 2010).


Thalassemia is the world's most common monogenic disorder. In 2005 it has been estimated that about 1.5% of the global population (80 to 90 million people) were carriers of beta thalassemia, with about 60,000 symptomatic individuals born annually, (*Vichinsky*, 2005). In Egypt, it is the most common chronic haemolytic anemia (85.1%) (*El-Beshlawy et al.*, 1999) among cases of anemia.

El-Beshlawy & Youssry (2009) estimated a carrier rate varying from 5.3 to 9%.

Thalassaemia is classified according to the chain of the globin molecule that is affected. Beta thalassemia major is an autosomal recessive disorder, (*Weatherall & Clegg 1996*). It is known to occur due to the mutations in the Beta-globin gene (HBB) on chromosome 11 (*Marengo-Rowe*, 2007). There are over 200 known mutations in Beta Globin Gene found to be associated with thalassaemia Beta-thalassemias are also very heterogeneous at the molecular

level. A complete updated list is available at the Globin Gene Server Web Site - http://globin.cse.psu.edu/ (*Cao & Galanello 2010*).

It is believed that each population has its own spectrum of mutations The World Health Organization has highlighted the importance of characterization of the spectrum of Beta thalassemia mutations as one of the ways for community control of Beta thalassemia (*Thong & Soo 2005*). Thus, characterization of the patients mutations in this study is essential for the management of Egyptian patients, particularly as related to premarital carrier detection and prenatal diagnosis.

Aim of the Study

- 1) Proper Diagnosis of 30 unrelated Egyptian beta-thalassemia patients harboring uncommon mutations through molecular characterization and phenotypic evaluation.
- 2) The Determination of a relation between the Pehnotype of our studied Beta thalassemia patients and their causative mutation.
- 3) Studying the genetic background of this disease among patients to offer proper genetic counseling which is considered the primary step in carrier detection and disease prevention.