#### Screening For Asymptomatic Bacteriuria During Pregnancy-Dipstick Urine Analysis Versus Simple Microscopic Urine Analysis

Thesis

Submitted for the Partial Fulfillment of Master Degree in

Obstetrics and Gynecology

By

**Eenaas Yusuf Yusuf** 

M.B.B.Ch., 2003 Mansoura University

Resident of Obstetrics and Gynecology in Al-Toor General Hospital

Under Supervision of

Prof. Mohamed Alaa MohyEl-Din El-Ghannam

Professor of Obstetrics and Gynecology Ain Shams University

Dr. Hosam Mohammad Mohammad Hemeda

Lecturer of Obstetrics and Gynecology Ain Shams University

> Faculty of Medicine Hin Shams University

> > 2010

#### Acknowledgement

First of all, I would like to Thank **Allah** who granted me the strength to accomplish this work.

Words do fail to express my deepest gratitude and appreciation to **Prof.** Mohamed Alaa MohyEl-Din El-Ghannam, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his excellent guidance and powerful support.

My deepest thanks and appreciation go to **Dr. Hosam** Mohammad Mohammad Hemeda, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his valuable instructions and expert touches.

Last but not least, my true affection and love go to all my family, who were, and will always be, by my side and without whom I would have never been able to accomplish this work. Their love, patience and support are most appreciated.

Eenaas Yusuf

#### List of Abbreviations

| ANC   | Antenatal care.                   |
|-------|-----------------------------------|
| ASB   | Asymptomatic bacteriuria.         |
| CFU   | Colony forming unit.              |
| IL    | Interleukine.                     |
| LE    | Leukocyte esterase test.          |
| Lesn  | combined leukocyte esterase test  |
|       | with nitrite test.                |
| ME    | Microscopic examination.          |
| NPV   | Negative predictive value         |
| PH    | Potential hydrogen                |
| POR   | Prevalence odds ratio             |
| PPROM | I Preterm premature rupture of    |
|       | membranes                         |
| PPV   | Positive predictive value         |
| PTL   | Preterm labour                    |
| ROC   | Receiver operating characteristic |
| SD    | Standard deviation                |
| THP   | Tamm-Horsfall Protein             |
| UTI   | Urinary tract infection.          |

#### Contents

| No.  | Title                                    | Page  |
|------|------------------------------------------|-------|
| I.   | Introduction                             | 1     |
| II.  | Aim of the work                          | 6     |
| III. | Review of literature                     | 7     |
| •    | Urinary tact infection                   | 7     |
| •    | Asymptomatic bacteriuria                 | 19    |
| •    | Significance of bacteriuria in pregnancy | 42    |
| •    | Screening for asymptomatic bacteriuria   | 48    |
| •    | Treatment of asymptomatic bacteriuria    | 61    |
| IV.  | Patients and methods                     | 72    |
| V.   | Results                                  | . 79  |
| VI.  | Discussion                               | . 107 |
| VII  | . Conclusion                             | . 119 |
| VII  | I. Recommendations                       | . 120 |
| IX.  | Summary                                  | . 121 |
| X.   | References                               | . 125 |
| ΧI   | Arabic summary                           |       |

#### List Of Tables

| Table | Title                                                                    | Page |
|-------|--------------------------------------------------------------------------|------|
| No.   |                                                                          |      |
| 1     | Spectrum of Urinary Pathogens<br>Isolated                                | 33   |
| 2     | Performance characteristics of the semi-automated method (Bac-T screen). | 57   |
| 3     | Performance characteristics of urine gram stain                          | 59   |
| 4     | Methods of calculation                                                   | 77   |
| 5     | Mean and SD of age and gestational age                                   | 79   |
| 6     | Age distribution among the studied group                                 | 80   |
| 7     | Distribution of gestational ages among the study subjects                | 81   |
| 8     | Gravidity distribution among studied population                          | 82   |
| 9     | Description of educational level among the study group                   | 83   |
| 10    | Number of mothers who attend OPC regularly among study group             | 84   |

## List Of Tables(Cont..)

| Table<br>No. | Title                                                                               | Page |
|--------------|-------------------------------------------------------------------------------------|------|
| 11           | Past history of urinary tract infection among studied group                         | 85   |
| 12           | The relation between different age groups and culture bacteriuria                   | 87   |
| 13           | Relation between gestational ages and culture bacteriuria                           | 88   |
| 14           | Relation between gravidity and culture bacteriuria                                  | 89   |
| 15           | Comparison between both positive and negative cases as regard educational level     | 90   |
| 16           | Relation between regular ANC and culture bacteriuria                                | 91   |
| 17           | Relation between past history of UTI and culture bacteriuria                        | 92   |
| 18           | Distribution of cases as regards presence of bacteriuria by microscopic examination | 93   |

## List Of Tables(Cont..)

| Table<br>No. | Title                                                                                                                                              | Page |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 19           | Distribution of cases as regard presence of pus cells by microscopic examination of urine samples                                                  | 95   |
| 20           | Kappa values of microscopic examination                                                                                                            | 97   |
| 21           | Distribution of cases as regard nitrite test results                                                                                               | 98   |
| 22           | Kappa values of nitrite test                                                                                                                       | 100  |
| 23           | Distribution of cases as regard leukocyte esterase results                                                                                         | 101  |
| 24           | Kappa values of leukocyte esterase test.                                                                                                           | 103  |
| 25           | Kappa values of combined leukocyte esterase test and nitrite test                                                                                  | 104  |
| 26           | Comparison between (nitrite test-leukocyte esterase test-microscopic examination) using sensitivity, specificity, PPV, NPV, accuracy& kappa value. | 105  |

## List Of Figures

| Figure<br>No. | Title                                                         | Page<br>No. |
|---------------|---------------------------------------------------------------|-------------|
| 1             | Age distribution among the studied group                      | 80          |
| 2             | Gestational age distribution in the studied cases             | 81          |
| 3             | Frequency of gravidity in the studied group                   | 82          |
| 4             | Educational levels among the studied group                    | 83          |
| 5             | Antenatal care in the study subjects                          | 84          |
| 6             | Past history of UTI among the studied group                   | 85          |
| 7             | Prevalence of ASB in the studied group.                       | 86          |
| 8             | Prevalence of bacteriuria in different age groups             | 87          |
| 9             | Prevalence of bacteriuria in different gestational age groups | 88          |
| 10            | Prevalence of bacteriuria in relation to gravidity            | 89          |

# List Of Figures(Cont..)

| Figure<br>No. | Title                                                        | Page |
|---------------|--------------------------------------------------------------|------|
| 11            | Prevalence of culture bacteriuria in relation to education   | 90   |
| 12            | Relation between regular ANC and culture bacteriuria         | 91   |
| 13            | Relation between culture bacteriuria and past history of UTI | 92   |
| 14            | Frequency of ME bacteriuriain studied group                  | 93   |
| 15            | Frequency of ME pyuria among studied group                   | 96   |
| 16            | Results of nitrite test in studied group                     | 99   |
| 17            | Results of LE test among studied group.                      | 102  |



# Introduction

#### **INTRODUCTION**

symptomatic bacteriuria is defined as a finding of more than 10<sup>5</sup> CFU/ml of urine in a clinically asymptomatic person (*Delzell et al.*, 2000).

The prevalence of asymptomatic bacteriuria during pregnancy ranges from about 2 to 10% (*Fiona*, 2007).

A urine culture obtained at 12-16 weeks of pregnancy will identify 80% of women who will ultimately have asymptomatic bacteriuria in pregnancy, with an additional 1-2% identified by repeated monthly screening (*Nicolle et al.*, 1994).

US. Preventive Services Task Force(2010) (USPSTF) recommends screening for asymptomatic bacteriuria with urine culture in pregnant women at 12 to 16 weeks' gestation or at the first prenatal visit, if later. (Grade A recommendation.)

There are a number of conditions associated with an increased prevalence of asymptomatic bacteriuria in pregnancy. Low socio-economic status, sickle trait, diabetes mellitus and grand multiparity have been reported; each is associated with two-fold increase in the rate of bacteriuria (*Kiningham*, 1993).

**Schieve** and associates conducted a study involving 25,746 pregnant women and found that the presence of UTI was associated with preterm labor, hypertensive disorders of pregnancy, anemia and amnionitis (**Delzell et al.**, 2000).

Initial studies reported 20% to 27% of women with asymptomatic bacteriuria developed pyelone-phritis compared to 0.4% to 1.2% of those without bacteriuria. A more recent study reported 13% of untreated women with asymptomatic bacteriuria developed pyelonephritis, compared with 0.4% of those with negative screening cultures (*Nicolle et al.*, 1994).

Women with urinary infection (UTI) associated pregnancy had a fetal mortality rate 2.4 times greater, low birth rate 2.04 times greater, and prematurity 2.4 times greater than those without urinary infection (Nicolle et al., 1994).

The mechanism by which asymptomatic bacteriuria promotes preterm labour is not clear, but

subclinical amnionitis or phospholipid A2 production by bacteria have been proposed (*Nicolle et al.*, 1994).

A number of studies suggest that urinary tract infection (UTI) during the course of gestation is associated with elevated risk for preeclampsia (Anatte Karmon et al., 2008).

The organisms that cause UTIs during pregnancy are the same as those found in non-pregnant patients. Escherichia coli accounts for 80 to 90 percent of infections. Other gram-negative rods such as Proteus mirabilis and Klebsiella pneumoniae are also common. Gram-positive organisms such as group B streptococcus and Staphylococcus saprophyticus are less common causes of UTI (John et al., 2000).

Due to the high prevalence of asymptomatic bacteriuria in pregnancy and its serious consequences, it is justifiable to screen for this condition in pregnancy.

In a prospective longitudinal study over a 2-year period from 2000 to 2001, the incidence of hospitalization for acute pyelonephritis was 1.4%, less than the 3-4% rate reported in the early 1970s before

screening for asymptomatic bacteriuria became routine (*Fiona*, 2007).

While most authors agree on the need for early urine screening, the best screening test to be used remains to be determined (*Littenberg et al.*, 1991).

The gold standard for detection of bacteriuria is urine culture, but this test is costly and takes 24 to 48hrs to obtain results. The accuracy of faster screening methods (e.g., leukocyte esterase dipstick, nitrite dipstick, urinalysis and urine Gram staining) has been evaluated (*Delzell et al.*, 2000).

Nitrite test depends on the ability of most enteric bacteria to reduce nitrates to nitrites (Mittendorf, 1992).

The dipstick leukocyte esterase (LE) test, which detects esterases released from degraded white blood cells, is an indirect test for bacteriuria (leukocytes are lysed in urine at pH value >6.0) (Martina Franz et al., 1999).

Examination of the sediment by microscopic urinalysis to detect bacteria and white blood cells has

also been evaluated as a screening test for bacteriuria (Bachman, 1993).

Contamination is sometimes unavoidable and remains a pitfall in the diagnosis of UTI. Contamination is likely if only small number of bacteria or several bacterial species grow in the urinary culture. Lactobacilli, Corynebacteria species, Gardenella,  $\alpha$ -haemolytic streptococci and aerobes are considered urethral and vaginal contamination (*Martina Franz et al.*, 1999).

Therefore it is recommended that physicians will have to balance between the cost and effectiveness of the screening test before deciding on it.