

Dual Energy Computed Tomography (DECT) Applications In Abdominal Imaging

An Essay

Submitted for partial fulfillment of

Master Degree of Radiodiagnosis

Presented by

Eslam Mahmoud Taha Mohamed

M.B.B.CH.

Faculty of Medicine - Zagazig University

Supervised by

Prof. Dr. Omnia Ahmed Kamal

Professor of Radiodiagnosis

Faculty of Medicine - Ain Shams University

Dr. Mostafa Farag El-Shafie

Lecturer of Radio diagnosis
Theodor Bilharz Research Institute
Faculty of Medicine
Ain Shams University
2015

Acknowledgement

First and foremost, I submit all my gratitude to ALLAH to whom I owe every success in my life.

I would like to express my sincere appreciations and profound gratitude to **Prof. Dr. Omnia Ahmed Kamal,** Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for her help, kind guidance, continuous support L giving me such an honor to work under her supervision.

I would like to express my respect, appreciation, and thanks for **Dr. Mostafa Farag El-shafie**, Lecturer of Radiodiagnosis, Theodor Bilhars Research institute, for his assistance, encouragement, invaluable guidance, constructive criticism and great help in supervising this work.

To my MUM,

DAD,

And WIFE

FOR

THEIR HELP,

SUPPORT,

GREAT CARE,

ENCOURAGEMENT

AND CONTINOUS PUSH

LIST OF APPREVIATIONS

3D : 3 Dimensions

AAA : Abdominal Aortic Aneurysm

CIN : Contrast Induced Nephropathy

CICT : Color-coded Iodine CT

CM : Contrast Medium

CNR : Contrast to Noise Ratio

CT : Computed Tomography

CTA : Computed Tomography Angiography

DECT: Dual Energy Computed Tomography

DSDECT: Dual Source Dual Energy Computed Tomography

DSDECTA: Dual Source Dual Energy Computed Tomography

Angiography

DVU: Delayed Virtual Unenhanced

EAP : Early Arterial Phase

ECM : Extra Cellular Membrane

EP : Equilibrium Phase

EVAR : Endo Vascular Aneurysm Repair

EVU : Early Virtual Unenhanced

Fig : Figure

FL : Falciform Ligament

FOV: Field Of View

GIB : Gastro Intestinal Bleeding

HCC: Hepato Cellular Carcinoma

HCV: Hepatitis C Virus

HIV : Human Immunodeficiency Virus

HPI-M: Hard Plaque Imaging-Modified

HPI-S: Hard Plaque Imaging-Standard

HU: Hounsfield Unit

IMA : Inferior Mesenteric Artery

IPMN: Intraductal Papillary Mucinous Neoplasms

ITPN: Intraductal Tubulo Papillary Neoplasms

IV : Intra Venous

IVC: Inferior Vena Cava

KEV: Kilo Electron Volt

KV : Kilo Volt

Kvp : Kilo voltage peak

L : Liter

LAP : Late Arterial Phase

LHV : Left Hepatic Vein

LPV: Left Portal Vein

mA : milli Ampere

MCN : Mucinous Cystic Neoplasm

MDCT : Multi Detector Computed Tomography

MHV : Middle Hepatic Vein

MIP : Maximum Intensity Projection

MPR : Multi Planar Reconstruction

MR : Magnetic Resonance

MRI : Magnetic Resonance Imaging

MSCT : Multi Slice Computed Tomography

PanIN: Pancreatic Intraepithelial Neoplasia

PVP : Portal Venous Phase

RHV : Right Hepatic Vein

RNA: Ribo Nucleic Acid

RPV: Right Portal Vein

SECT : Single Energy Computed Tomography

SMA : Superior Mesenteric Artery

ssDECT : single source Dual Energy Computed Tomography

TACE: Transcatheter Arterial Chemoembolization

TNE: True Non-Enhanced

TUE : True Un Enhanced

UA : Uric Acid

UE : Un Enhanced

UVJ : Uretero Vsical Junction

VNC: Virtual Non Contrast

VNE : Virtual Non-Enhanced

VUE : Virtual Un-Enhanced

WSS : Wall Shear Stress

μ : Linear attenuation coefficient

LIST OF FIGURES

Fig.1.	Axial section of the upper liver shows the confluence between the hepatic veins and inferior vena cava	6
Fig.2.	Axial section of the liver shows portal vein branches	. 7
Fig.3.	Axial section of the liver shows celiac artery and its common hepatic artery branch	8
Fig.4.	Segmental anatomy according to Couinaud	. 9
Fig.5.	CT scan through the liver with Couinaud's segments divided and numbered	11
Fig.6.	Normal gallbladder	12
Fig.7.	Normal intrahepatic ducts	13
Fig.8.	Normal pancreatic phase computed tomography (CT)	16
Fig.9.	Computed tomography image of normal spleen	19
Fig.10.	Computed tomography appearance of the normal spleen (S) during bolus intravenous injection of contrast material	20
Fig.11.	A diagram showing the normal kidney structure	21
Fig.12.	Normal CT anatomy of the kidney	22
Fig.13.	CT renal angiogram showing single renal arteries (arrows) to each kidney	24
Fig.14.	Retroperitoneal anatomy	25
Fig.15.	Volume rendering reconstruction shows the ureters as muscular tubes that propel urine from the kidneys to the urinary bladder	26
Fig.16.	Normal adrenal glands on computed tomography	27
Fig.17.	Celiac trunk	30
Fig.18.	Direct SMA angiogram showing branches of the SMA	31
Fig.19.	CT of the selective catheterization of the inferior mesenteric artery	32
Fig.20.	CT of SMA and IMA	32

Chapter 2: Physical Aspects Of Dual Energy Multidetector Computed Tomography

Fig.21.	Graph of mass-attenuation coefficients for iodine (blue), calcium (green), and water (red) on CT images obtained at two different energies	36
Fig.22.	Sketch of dual-source CT system with two tubes and detectors mounted orthogonally in one gantry	37
Fig.23.	Sketch of rapid kilovoltage-switching system containing only one tube and one detector	38
Fig.24.	Sketch of layer detector system with one x-ray tube running at constant voltage	39
Fig.25.	Non-material-specific display techniques	43
Fig.26.	Three-material decomposition	46
Fig.27.	Patient with implanted stent graft in the descending thoracic aorta	47
Fig.28.	Clinical example dataset obtained on dual-source CT scanner at 140 kVp and 71 mAs and 100 kVp and 69 mAs in patient with liver metastasis from colorectal cancer	49
Chapte	er 3: Role Of Dual Energy Multidetector Computed Tomography In The Abdomen	d
Fig.29.	Diagram of multiphasic vascular enhancement of the liver	67
Fig.30.	Material-specific iodine display techniques	69
Fig.31.	Hyperenhancing hepatic lesion visible only on lower- energy images	71
Fig.32.	Increased conspicuity of hyperenhancing hepatic lesions on lower-energy images	71
Fig.33.	A diagram depicting the hypothesis of color-coded iodine CT (CICT) image for discriminating a viable tumor from an iodized oil-laden lesion	73
Fig.34.	Patient with several large HCCs	74
Fig.35, 36.	DECT improves the characterization of small indeterminate	
	lesions seen at conventional CT, helping identify a hepatic cyst (35) and a hepatic metastasis (36) in different patients	76

Fig.38.	Comparison between 5-mm conventional unenhanced image and 5-mm virtual unenhanced image	. 81
Fig.39.	Three axial nonenhanced image sets in a patient with gallstone	. 82
Fig.40.	DECT showing gall stone composition	. 83
Fig.41.	Conventional contrast-enhanced (a) 80-kVp and (b) 140-kVp images in a healthy patient	. 88
Fig.42.	DECT in patient with pancreatic head mass	. 89
Fig.43.	DECT in imaging of pancreatic masses	. 90
Fig.44.	Focal pancreatic fat simulating a mass	. 91
Fig.45.	Pancreatitis with focal necrosis	. 92
Fig.46.	48-year-old female with serous cyst adenoma of the pancreas	. 93
Fig.47.	DECT for adrenal mass characterization	. 98
Fig.48.	Different phases of normal renal contrast enhancement	100
Fig.49.	Calcium oxalate stones	104
Fig.50.	Uric acid stones	104
Fig.51.	Combined uric acid and calcium salt stone	105
Fig.52.	Transverse CT images in a patient with multiple renal stones	107
Fig.53.	DECT in patient with renal cyst	109
Fig.54.	DECT in patient with renal neoplasm	109
Fig.55.	Benign simple renal cyst	110
Fig.56.	Grade 3 clear cell renal cell carcinoma	111
Fig.57.	Direct comparison of a venous-phase dual energy CTA of the thoracic aorta and a virtual-noncontrast (VNC) images	
Fig.58.	Beside the VNC image which can be generated from the venous-phase dual-energy dataset, color-coded images may be created to show the iodine distribution	114
Fig.59.	Application of the "hard plaque" algorithm to a dual- energy dataset	114
Fig.60.	Reformatted coronal maximum-intensity-projection images of 56-year-oldman and 37-year-old woman obtained by SECT (a) and DECT (b), respectively	116

Fig.61.	An example showing better characterization of the renal artery branches by DECT at optimal keV of a 44-year-old man (a) than by SECT of a 36-year-old woman(b)	117
Fig.62.	A 74-year-old man with intermittent melaena for 3 months .	118
Fig.63.	Dual-energy imaging of a patient with Type II endoleak after EVAR	120
Fig.64.	Type II endoleak in a patient after EVAR	120
Fig.65.	A patient 3 months after EVAR of an abdominal aortic aneurysm	121
Fig.66.	A patient 25 years after EVAR of an abdominal aortic aneurysm	122

LIST OF TABLES

Table.1.	Relative Ad	vantages	and Disac	lvantages of	f Different l	Dual	-Energy
	CT System	ms					41
Table.2.	Suggested		0 0		U		
	indication	1					67

CONTENTS

		Page
Introduction	l	1
Aim of the V	Vork	3
Chapter1:	CT radiological anatomy of the abdomen	4
Chapter2:	Physical aspects of dual energy multidetector computed tomography	33
Chapter 3:	Role of dual energy multidetector computed tomography in the abdomen	
Summary an	nd conclusion	123
References	••••••	126
Arabic Sumi	mary	

INTRODUCTION

Changes are occurring in medical CT imaging that promise to augment the already well recognized CT strengths of speed, high resolution, excellent patient tolerance, and large territory coverage. These changes include dose reduction, noise reduction, and more speed (*Yeh et al.*, 2009).

The concept of dual-energy computed tomography (CT) originated during the early development of CT. However, it was only recently that advances in scanner technology made dual-energy CT possible for routine clinical use (*Kaza et al.*, 2012).

Dual-energy CT is gradually changing the way CT is practiced today. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT provides quantitative information about tissue composition, overcoming the limitations of attenuation based conventional single energy CT imaging (*Marin et al.*, 2014).

Two major advantages of DECT are material decomposition by the almost simultaneous acquisition of two image series with different kVp (80 and 140 kVp) and the elimination of misregistration artifacts (Karçaaltıncaba and Aktaş, 2011).

Implementation of DECT in abdominal CT provides a variety of applications to improve tissue characterization. Reconstruction of virtual unenhanced series can be used in the assessment of renal or adrenal lesions incidentally detected by single-phase contrast-enhanced DECT while considerably reducing radiation dose compared with a dual-phase, single-

energy CT protocol with true unenhanced acquisition (*Heye et al.*, 2012).

By using the spectral information of DECT iodinated contrast media can be selectively visualized to improve the conspicuity of enhancing focal liver lesions, or to suppress the iodine signal to create a virtual non-enhanced CT data set (*Johnson et al.*, 2012).

Although many of its clinical applications are still in the investigative stage, DECT shows great promise as a powerful tool in abdominopelvic imaging. With improved lesion detection and the ability to exploit differences in tissue behavior at different energy levels, DECT has a potential role in each organ system (*Del Gaizo et al.*, 2014).