COMPUTER APPLICATIONS ON PATTERN RECOGNITION FOR AGRICULTURAL PURPOSES

By ESMAIL HUSSIEN ESMAIL EWIDA

B.Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2003. M.Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2009.

A thesis submitted in partial fulfillment of The requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science

(Agricultural Engineering)

(Bio-Systems Agricultural Engineering)

Department of Agricultural Engineering

Faculty of Agriculture

Ain Shams University

Approval sheet

COMPUTER APPLICATIONS ON PATTERN RECOGNITION FOR AGRICULTURAL PURPOSES

By ESMAIL HUSSIEN ESMAIL EWIDA

B.Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2003. M.Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2009.

This thesis for Ph.D. degree has been approved by:

Dr. Samir Ahmed Tayel
Prof. Emeritus of Agricultural Engineering, Fac. of Agric. Eng.,
Al-Azhar University.
Dr. Essam Ahmed El Sahhar
Prof. of Agricultural Engineering, Fac. of Agric., Ain Shams
University.
Dr. Mohamed Nabil El Awady
Prof. Emeritus of Agricultural Engineering, Fac. of Agric., Ain
Shams University.
Date of Examination: / /2015

COMPUTER APPLICATIONS ON PATTERN RECOGNITION FOR AGRICULTURAL PURPOSES

By ESMAIL HUSSIEN ESMAIL EWIDA

B.Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2003. M.Sc. Agric. Sc. (Agric. Mechanization), Ain Shams University, 2009.

Under the supervision of:

Dr. Mohamed Nabil El Awady

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principle Supervisor).

Dr. Mahmoud Zaky El Attar

Assist. Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Mohsen Ali Rashwan

Prof. of Communication, Department of Communication, Faculty of Engineering, Cairo University.

تطبيقات حاسوبية للتعرف على الأنماط في أغراض زراعية

رسالة مقدمة من

اسماعيل حسين اسماعيل عويضة

بكالوريوس علوم زراعية (ميكنة زراعية)، جامعة عين شمس، 2003 ماجستير علوم زراعية (ميكنة زراعية)، جامعة عين شمس، 2009

للحصول على درجة دكتوراة الفلسفة في العلوم الزراعية (هندسة زراعية) (هندسة النظم الحيوية الزراعية)

قسم الهندسة الزراعية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

تطبيقات حاسوبية للتعرف على الأنماط في أغراض زراعية

ر سالة مقدمة من

اسماعيل حسين اسماعيل عويضة

بكالوريوس علوم زراعية (ميكنة زراعية) ، جامعة عين شمس، 2003 ماجستير علوم زراعية (ميكنة زراعية)، جامعة عين شمس، 2009

للحصول على درجة دكتوراة الفلسفة في العلوم الزراعية (هندسة زراعية) (هندسة النظم الحيوية الزراعية)

اللجنة

و قد تمت مناقشة الرسالة و الموافقة عليها :

<i>J</i>	د. سمير أحمد طايا
الـزراعـيـة المتفرغ، كلية الهندسة الزراعية، جامعة الأزهر	أستاذ الهندسة
ىحار	د. عصام أحمد الس
الـزراعـيـة، كلية الزراعة، جامعة عين شمس	أستاذ الهندسة
ضي	د. محمد نبيل العوا
الـزراعـيـة غير المتفرغ، كلية الزراعة، جامعة عين شمس	أستاذ الهندسة
2015/3/14	تاريخ المناقشة:4

جامعة عين شمس

كلية الزراعة

رسالة دكتوراة

اسم الطالب: اسماعيل حسين اسماعيل عويضة عنوان الرسالة: تطبيقات حاسوبية للتعرف على الأنماط في أغراض زراعية اسم الدرجة: دكتوراه في فلسفة العلوم الزراعية (هندسة زراعية)

لجنة الاشراف

د. محمد نبيل العوضى

أستاذ الهندسة الزراعية غير المتفرغ، قسم الهندسة الزراعية، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. محمود زكي العطار

أستاذ الهندسة الزراعية المساعد، قسم الهندسة الزراعية، كلية الزراعة جامعة عين شمس

د. محسن علي رشوان

أستاذ الاتصالات، قسم الاتصالات، كلية الهندسة، جامعة القاهرة

تاريخ التسجيل 2009/10/1 الدراسات العليا

أجيزت الرسالة بتاريخ / 2015 موافقة مجلس الجامعة / 2015/ ختم الاجازة

موافقة مجلس الكلية / /2015

CONTENTS

	LIST OF TABLES	iv
	LIST OF FIGURES	v
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	5
2.1	Machine vision systems	5
2.2	Computer vision systems	7
2.2.1	Advantages and disadvantages of computer vision:	9
2.2.2	Comparison between machine vision and computer	10
	vision	
2.3	Pattern recognition	13
2.3.1	Pattern recognition in agricultural products grading	12
2.3.1.1	Apple grading:	12
2.3.1.2	Orange grading	16
2.3.1.3	Strawberry grading	17
2.3.1.4	Tomato grading	18
2.3.1.5	Peach and pear grading	19
2.3.1.6	Mushroom grading	20
2.3.1.7	Potato grading	21
2.3.1.8	Palm Date grading	21
2.3.1.9	grading of other materials	22
2.4	Image processing	22
2.5	Feature extraction	23
2.5.1	Edge detection	23
2.5.1.1	Canny edge detection	24
2.5.2	Color models	25
2.5.2.1	Pixel	25
2.5.2.2	RGB Color model	27
2.5.2.3	CMYK Color model	27

2.5.3	size	30
2.5.4	Surface texture (skin)	33
2.5.5	Surface color	34
2.6	Supervised machine learning classifiers	35
2.6.1	Fuzzy logic	35
2.6.2	Artificial Neural Network	36
2.6.3	K-Nearest Neighbors	39
2.6.4	Support Vector Machine	40
III	MATERIALS AND METHODS	42
3.1	Materials	42
3.1.1	Hardware	42
3.1.2	Fruit samples	43
3.2	Methods	43
3.2.1	Image acquisition:	43
3.2.1.1	First experiment palm-date fruits	43
3.2.1.2	Second experiment peanut:	43
3.2.2	Preprocessing	45
3.2.3	Image segmentation	45
3.2.4	Feature Extraction	51
3.2.4.1	Fruit Size: F(S)	51
3.2.4.2	Color model: F(C)	51
3.2.4.3	Texture: F(T)	52
3.2.5	Classification	52
3.2.5.1	Fuzzy logic	52
3.2.5.1.1	Date grading using fuzzy logic	57
3.2.5.2	Classification of the second experiment	60
3.2.5.2.1	Artificial neural network	60
3.2.5.2.2	Support Vector Machine	61
3.2.5.2.3	K- Nearest Neighbors	61
IV	RESULTS AND DISCUSSION	62
4.1	First Experiment	62

4.1.1	Image segmentation	62
4.1.2	Image feature extraction	64
4.1.2.1	Size F(s):	64
4.1.2.2	Surface Color F(c):	64
4.1.2.3	Surface texture F(t)	66
4.1.3	Classifier "Fuzzy Logic" evaluation	69
4.2	second Experiment	73
4.2.1	Classifier Evaluation	73
${f V}$	CONCLUSION	74
VI	SUMMARY	75
VII	REFERENCES AND PUBLICATIONS	76
	Appendix A	88
	ARABIC ABSTRACT	

LIST OF TABLES

Table No.		Page
1	The rules of Fuzzy logic for date grading	58
	(AlHomedey, 2011).	
2	Sample fruit present the size variety. Sorted from	65
	biggest to smallest.	
3	Sample fruit present the color variety. Sorted from	66
	light to dark	
4	Sample fruit present the texture variety	68
5	Sample date fruits with result variety	71

LIST OF FIGURES

Figure No.		Page
1	The connection between CV, MV, and	11
	Image processing (Wikipedia, 2013)	
2	Canny edge detecting steps	26
3	Pixel value in gray-scale and RGB color	28
	image (Gonzalez and Woods, 2008).	
4	RGB color cube (Gonzalez and Woods,	29
	2008)	
5	Primary and secondary colors of light and	29
	pigments (Gonzalez and Woods, 2008).	
5	The flow chart of grading process.	37
6	multiple-layer feed forward neural network.	38
7	Maximum-margin hyper plane and margins	41
	for a SVM trained with samples from two	
	classes. Samples on the margin are called	
	the support vectors	
8	The flow chart of grading process.	45
9	the steps of preprocessing process	46
10	Detecting a date fruit using image	49
	segmentation	
11	Detecting a peanut using image	50
	segmentation	
12	Texture calculating technique.	53
13	The fuzzy logic toolbox in MATLAB.	55
14	The membership functions used in this	56
	study.	
15	Code for Artificial neural network	60
	(MATLAB).	
16	Code for SVM (MATLAB)	61

17	Code for K- Nearest Neighbors (MATLAB)	61
18	The result of each step of the pattern	63
	recognition algorithm.	
19	The classification result after defuzzify the	70
	information	

1. Introduction

The performance of grading systems depends on the quality factors that are used in their design. For fruit grading there are many factors that farmers use for measuring the fruit quality. These factors can be classified into two groups: the external quality factors and the internal quality factors. The external quality factors can be defined and extracted from the visual appearance of the fruit. Commonly used factors are size, shape, color, and texture (fruit surface patterns). The internal quality factors can be defined by the fruit smell like aroma, taste, flavor, sweetness and sourness, and fruit nutritive value like vitamins, minerals, nutrients and carbohydrates, and other elements like dry matter content, total soluble solids content, sugar content, and acidity. There are some quality factors like firmness, crispness, and toughness that can be defined by touching the fruit and may be considered external or internal factors.

For marketing purposes, fruits are generally graded on the basis of their external quality features. The visual inspection, because of its practicability and simplicity, is the most frequent option in practice. Francis (1980) found that human perception could be easily fooled. Together with the high labor costs, inconsistency and variability associated with human inspection accentuates the need for objective measurements systems Therefore, intensive research is being conducted to automate visual inspection process. Automated grading of agricultural products has been getting special interest recently, as the demand for higher quality food products has increased. The potential of computer vision in the food industry has long been recognized (Tillett, 1990) and the food industry is now ranked among the top 10 industries using this technology (Gunasekaran, 1996). Continued advancements in image processing and pattern recognition fields are providing effective tools and techniques to build systems capable of grading and sorting almost every agricultural product. These systems differ from one another on the basis of image capturing processes, imaging equipment, image processing

techniques and *pattern recognition* (mainly feature extraction and classification) methods that they are employed.

In this study, the size, color and texture will be the main considerations for building a pattern recognition grading system mainly for fruits with a case study of (Siwi عيد) date fruits in "Tamr stage" نمر "This computer vision application consists of a preprocessing application that helps in calculating the limits of features under this study i.e.: maximum size, minimum size of the training set of the fruit. This application may be replaced by manually input this limits. The main application purpose is to convert the visual aspects like size of the fruit to numbers which can be calculated. The classification method will be different for each kind of fruit, so this pattern recognition application will use a fuzzy logic classifier of (AlHomedey, 2011) which was designed to classify a semi-dry date fruit. This pattern recognition application can deal with any classifier techniques like artificial neural network (ANN), fuzzy logic (FL), K-nearest neighbor (KNN), or support vector machine (SVM).

Fuzzy rule-based inference models were used in this study. Fuzzy logic lies at the opposite pole of system modeling with respect to the NN and SVM methods. It is a white box approach - Structured knowledge (experience, expertise, or heuristics). No data required. IF-THEN rules are the most typical examples of structured knowledge. - In the sense that it is assumed that there is already human knowledge about a solution. Therefore, the modeled system is known (i.e., white). On the application level, FL can be considered an efficient tool for embedding structured human knowledge into useful algorithms. It is a precious engineering tool developed to do a good job of trading or precision and significance. In this respect, FL models do what human beings have been doing for a very long time. As in human reasoning and inference, the truth of any statement, measurement, or observation is a matter of degree. This degree is expressed through the membership functions that quantify (measure) a degree of belonging of some (crisp) input to given fuzzy subset.

Zadeh (1965; 1973) stated that the concept of fuzzy logic is used in many different senses. In a narrow sense, fuzzy logic (FL) is