Effect of Surface contamination on Bond Strength of Repair Composite to Lithium Disilicate Ceramic, Enamel and Dentin

Thesis submitted to the faculty of dentistry, Ain Shams University in partial fulfillment of the requirements of Doctor Degree in operative dentistry.

By Mohamed Amr Fathy Mohamed Kamel

B.D.S., Ain Shams University (2006) M.Sc., Ain Shams University (2012)

Supervisors

Dr. Farid Mohammed Sabry El-Askary

Professor of operative dentistry and Vice Dean of education and student affairs Faculty of dentistry, Ain Shams University

Dr. Ahmed Ahmed Laithy Hassan

Lecturer of operative dentistry
Faculty of dentistry, Ain Shams University

Dr. Amr Saleh El-Etreby

Lecturer of crown and bridge Faculty of dentistry, Ain Shams University

Acknowledgement

I would like to express my most sincere gratitude and grateful appreciation to *Professor Dr. Farid Mohammed Sabry El-Askary* Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University for his kind guidance, sincerity, extraordinary supervision and unlimited support and help throughout my academic and clinical work.

I would like to thank *Or. Ahmed Ahmed Laithy Hassan* Lecturer of Operative Dentistry, Faculty of Dentistry, Ain Shams University for his excellent advice, valuable stimulating guidance and help during this study.

I deeply thank and faithfully express my gratitude and appreciation to *Dr. Amr Saleh El-Etreby*, Lecturer of Crown and Bridge, Faculty of Dentistry, Ain Shams University. It was honor to work under his supervision, and inspired by his sparkling enthusiasm throughout the whole work.

Special thanks are due to **VOCO**, **Cuxhaven**, **Germany** for supplying Futurabond M+ and Grandio composite used in this study.

Dedication

I wish to dedicate this work to

my Family,

my supporting Wife,

and my Lovely Son.

List of contents

List of tables.	i
List of figures.	iii
Introduction	1
Review of literature.	3
Aim of the study	20
Materials and methods	21
Results	37
Discussion.	77
Summary and Conclusions.	84
References	87
Arabic summary	

List of Tables

Table 1	Materials (manufacturer), description, compositions and their lot numbers	21
Table 2	Two way ANOVA for the effect of surface treatment and adhesive protocol and their interaction on the bond strength of resin composite to lithium disilicate ceramic	38
Table 3	Means ± Standard Deviations (MPa) for the effect of surface treatment and adhesive protocol on the shear bond strength of resin composite to lithium disilicate ceramic	39
Table 4	Two way ANOVA for the effect of surface treatment and adhesive protocol and their interaction on the bond strength of resin composite to enamel	42
Table 5	Means ± Standard Deviations (MPa) for the effect of surface treatment and adhesive protocol on the shear bond strength of resin composite to enamel	43
Table 6	Two way ANOVA for the effect of surface treatment and adhesive protocol and their interaction on the bond strength of resin composite to dentin	46
Table 7	Means ± Standard Deviations (MPa) for the effect of surface treatment and adhesive protocol on the shear bond strength of resin composite to dentin	48
Table 8	The percentage of each type of shear bond failure (adhesive, mixed and cohesive failures) in all tested ceramic groups	50

Table 9	The percentage of each type of shear bond failure (adhesive, mixed and cohesive failures) in all tested enamel groups	53
Table 10	The percentage of each type of shear bond failure (adhesive, mixed and cohesive failures) in all tested dentin groups	55

List of Figures

Figure 1	Molar half adhered to acrylic resin block	23
Figure 2	Composite cylinders adhered to the surface of the ceramic disc	34
Figure 3	Two composite cylinders adhered to enamel and two composite cylinders adhered to dentin	35
Figure 4	Acrylic block with ceramic disc fixed to its surface mounted to the Universal Testing Machine	35
Figure 5	Bar chart for the effect of surface treatment within each adhesive on the shear bond strength of resin composite to lithium disilicate ceramic	40
Figure 6	Bar chart for the effect of adhesive protocol within each surface treatment on the shear bond strength of resin composite to lithium disilicate ceramic	40
Figure 7	Bar chart for the effect of surface treatment within each adhesive on the shear bond strength of resin composite to enamel	44
Figure 8	Bar chart for the effect of adhesive within each surface treatment on the shear bond strength of resin composite to enamel	44
Figure 9	Bar chart for the effect of surface treatment within each adhesive on the shear bond strength of resin composite to dentin	48
Figure 10	Bar chart for the effect of adhesive protocol within each surface treatment on the bond strength of composite to dentin	49
Figure 11	Bar chart representing the percentage of adhesive, mixed and cohesive failures in all tested ceramic groups	50

Figure 12	Representative stereomicroscope picture showing adhesive type of failure on the surface of lithium disilicate ceramic	51
Figure 13	Representative stereomicroscope picture showing mixed type of failure on the surface of lithium disilicate ceramic	51
Figure14	Representative stereomicroscope image showing cohesive type of failure on the surface of the ceramic	52
Figure 15	Bar chart representing the percentage of adhesive, mixed and cohesive failures in all tested enamel groups	53
Figure 16	Representative stereomicroscope picture showing adhesive type of failure on the surface of enamel	54
Figure 17	Representative stereomicroscope picture showing mixed type of failure on the surface of enamel	54
Figure 18	Bar chart representing the percentage of adhesive, mixed and cohesive failures in all tested dentin groups	55
Figure 19	Representative stereomicroscope picture showing adhesive type of failure on the surface of dentin	56
Figure 20	Representative stereomicroscope picture showing mixed type of failure on the surface of dentin	56
Figure 21	SEMicrograph for a representative C1 group specimen (HF)	57
Figure 22	SEMicrograph for a representative C2 group specimen (SC)	58
Figure 23	SEMicrograh for a representative C3 group specimen (HF-SBU/E&R)	58

Figure 24	SEMicrograh for a representative C4 specimen (HF-SBU/SE)	group	59
Figure 25	SEMicrograh for a representative C5 specimen (HF-FM+/E&R)	group	59
Figure 26	SEMicrograh for a representative C6 specimen (HF-FM+/SE)	group	60
Figure 27	SEMicrograh for a representative C7 specimen (SC-SBU/E&R)	group	60
Figure 28	SEMicrograh for a representative C8 specimen (SC-SBU/SE)	group	61
Figure 29	SEMicrograph for a representative C9 specimen (SC-FM+/E&R)	group	61
Figure 30	SEMicrograh for a representative C10 specimen (SC-FM+/SE)	group	62
Figure 31	SEMicrograh for a representative E1 specimen (SBU/E&R)	group	63
Figure 32	SEMicrograh for a representative E2 specimen (SBU/SE)	group	64
Figure 33	SEMicrograh for a representative E3 specimen (FM+/E&R)	group	64
Figure 34	SEMicrograh for a representative E4 specimen (FM+/SE)	group	65
Figure 35	SEMicrograh for a representative E5 specimen (HF-SBU/E&R)	group	65
Figure 36	SEMicrograh for a representative E6 specimen (HF-SBU/SE)	group	66
Figure 37	SEMicrograh for a representative E7 specimen (HF-FM+/E&R)	group	66

Figure 38	SEMicrograh for a representative E8 group specimen (HF-FM+/SE)	67
Figure 39	SEMicrograh for a representative E9 group specimen (SC-SBU/E&R)	67
Figure 40	SEMicrograh for a representative E10 group specimen (SC-SBU/SE)	68
Figure 41	SEMicrograh for a representative E11 group specimen (SC-FM+/E&R)	68
Figure 42	SEMicrograh for a representative E12 group specimen (SC-FM+/SE)	69
Figure 43	SEMicrograh for a representative D1 group specimen (SBU/E&R)	70
Figure 44	SEMicrograh for a representative D2 group specimen (SBU/SE)	71
Figure 45	SEMicrograh for a representative D3 group specimen (FM+/E&R)	71
Figure 46	SEMicrograh for a representative D4 group specimen (FM+/SE)	72
Figure 47	SEMicrograh for a representative D5 group specimen (HF- SBU/E&R)	72
Figure 48	SEMicrograh for a representative D6 group specimen (HF- SBU/SE)	73
Figure 49	SEMicrograh for a representative D7 group specimen (HF- FM+/E&R)	73
Figure 50	SEMicrograh for a representative D8 group specimen (HF- FM+/SE)	74
Figure 51	SEMicrograh for a representative D9 group specimen (SC- SBU/E&R)	74

Figure 52	SEMicrograh for a representative D10 group specimen (SC- SBU/SE)	75
Figure 53	SEMicrograh for a representative D11 group specimen (SC- FM+/E&R)	75
Figure 54	SEMicrograh for a representative D12 group specimen (SC- FM+/SE)	76

All-ceramic restorations, including inlays, onlays, veneers, all-ceramic crowns and all-ceramic bridges, have been extensively used nowadays due to the increased patient's esthetic demands ⁽¹⁾. Lithium disilicate ceramic is one of the most commonly used ceramics to fabricate veneers, inlays, onlays and crowns. The monolithic use of this ceramic has been adopted rather than the bi-layered restorations due to its higher resistance to fracture, although fracture may still occur to this type of restorations ⁽²⁾. All-ceramic restorations are adhesively cemented to tooth structure, therefore in case of fracture or chipping it will be difficult to remove such restorations for total replacement or indirect repair without causing damage to the restoration itself or the tooth structure ⁽³⁾. Intraoral repair of all-ceramic restoration represents a good treatment option due to the decreased chair-side time, cost and the amount of tooth structure which may be sacrificed during removal of the restoration for total replacement or indirect repair ⁽⁴⁾.

Resin composite has been widely used as a repair material in case of fractured all-ceramic restoration due to its good esthetics, cost and ease of manipulation ⁽⁴⁾. The durability of resin composite as a repair material has two aspects; its bond strength to the ceramic material mediated by different surface treatments for the ceramic surface, and its bond strength to tooth structure mediated by different adhesive systems ^(5, 6). Different repair methods have been used such as hydrofluoric acid etching, airborne particle abrasion, silica coating and grinding using a bur.

Meanwhile, a new family of adhesive systems has been introduced into the markets known as "multi-mode" or "universal adhesives" ⁽⁷⁾. These adhesives give the dentist the opportunity to decide whether to implement the

Introduction

etch-and-rinse or the self-etch approach ⁽⁸⁻¹⁰⁾. Also, these universal adhesives may contain silane which enhance bonding to ceramics ⁽¹¹⁾.

Although many studies have been presented to investigate the repair bond strength of composite to lithium disilicate ceramics few if any studies were directed to investigate the effect of different bonding protocols on the bond strength of resin composite to the ceramic surface after different repair protocols. Also, this study was planned to investigate the effect of different ceramic repair protocols on bond strength of the "multi-mode" or "universal" adhesives to enamel and dentin.

Ceramic Reapir:

The increasing demand for esthetic restorations has led to the popularity of using all-ceramic restorations (12). All-ceramic restorations offer highly esthetic appearance, wear resistance, biocompatibility, and color stability (13,14). All-ceramic restoration have always suffered from the extension and growth of microscopic surface flaws which have always been one of the major damaging mechanisms, therefore leucite, fluormica, or alumina crystals were incorporated in the glass matrix to improve the resistance of the ceramics to crack propagation leading to its reinforcement (15). Lithium disilicate ceramics were first introduced 1998 by Ivoclar vivadent as IPS Empress II which is now called IPS e.max Press to become one of the most commonly used ceramics in the fabrication of esthetic and fracture-resistant restorations (12).

IPS Empress II, (Ivoclar Vivadent; Schaan, Liechtenstein) represented the first generation of lithium disilicate ceramics. It was fabricated in the form of glass pellets which were used in the lost wax technique, where melted glass pellets were injected under pressure to fill the mold cavity ⁽¹⁶⁾. The second generation was introduced (IPSe.max, Ivoclar Vivadent; Schaan, Liechtenstein) which was characterized by more homogenous and finer crystals due to its method of fabrication which was known as double nucleation based on controlling the crystallization process This modification led to an increase in the flexural strength from 330 MPa to 440 MPa ⁽¹⁷⁾. IPS e.max has two forms; either IPS e.max Press for the lost wax technique or IPS e.max CAD blocks for the use with CAD/CAM milling machines.

Lithium disilicate ceramics scanning micrographs revealed closely packed, multidirectional and interlocking elongated lithium disilicate crystals