Management of Hepatocellular carcinoma in cirrhotic patients

Essay

submitted for fulfillment of master degree in general surgery

<u>By</u>

Gamal Ragab Ahmed Hassan

M.B.B.CH, Ain Shams University

Supervised by

Prof. Dr: Mohamed Naguib Hassan

Professor of General surgery

Ain Shams University

Prof. Dr. Amr Kamel El Feky

Assistant Professor of General surgery

Ain Shams University

Dr. Hany Said Abd El-Baset

Lecturer of General surgery

Ain Shams University

Ain Shams University

2010

طرق علاج سرطان الكبد في مرضى التليف الكبدي

رسالة توطئة للحصول على درجة الماجستير في الجراحة العامة

مقدمة من الطبيب جمال رجب أحمد حسن بكالوريوس الطب و الجراحة جامعة عين شمس

تحت إشراف

أ.د / محمد نجيب حسن

أستاذ الجراحة العامة جامعة عين شمس

أ.د / عمرو كامل الفقى

أستاذ مساعد الجراحة العامة جامعة عين شمس

د / هانی سعید عبد الباسط

مدرس الجراحة العامة جامعة عين شمس

جامعة عين شمس ٢٠١٠

List of Abbreviations

AFB1	Aflatoxin -B1	
ALT	Alanine transaminase	
ALD	Alcohol liver disease	
ALP	Alkaline phosphatase	
AFP	Alpha feto protein	
AJCC	American joint committee on cancer	
AST	Aspartate transamin	
ATH	Auto –immune hepatitis	
BCIC	Barcelona clinic liver cancer	
BC	Biliary complications	
CIIP	Cancer of the liver Italian Program	
CEA	Carcino- embryonic antigen	
CT	Computed tomography	
CEMRI	Contrast- enhanced MRI	
CSE	Contrast spin echo	
CECT	Contrast-enhanced CT	
DGCP	Des – gamma carboxy prothrombin	
DSA	Digital subtraction angiography	
DPD	Dihydropyrimidine hydrogenase	
DNA	Dinuclic acid	
M	Distant metastasis	
FNA	Fine needle aspiration	
FNAC	Fine Needle aspiration cytology	
FNB	Fine needle biopsy	
18 F- FDG	Fluorine – 18 fluorodeoxy glucose	
FNH	Focal nodular hyperplasia	

FLR	Future liver remnant		
GD- DTPA	Gadolinium diethylene triamine Pentaacetic acid		
GD – EOP – DTPA	Gadolinium ethoxy benzl diethylene Triamine pentaacetic acid		
GPC-3	Glypican – 3		
HSEC	Hepatic sinusoidal endothelial cell		
HBsAg	Hepatitis B surface antigene		
HBV	Hepatitis B virus		
HCV	Hepatitis C virus		
НСС	Hepatocellular carcinoma		
HCFU	Hexyl carbamoyl -5-fluorouracil		
ICG	Indocyanine green		
IVC	Inferior vena cava		
ICU	Intencive care unit		
INR	International normalize ratio		
ILC	Interstitial laser coagulation		
MRNs	Macro-regenerative nodule		
MRI	Magnetic Resonance imaging		
MTC	Metastatic tumor cryosurgery		
MTC	Microwave tissue coagulation		
MDRG	Multi-drug resistance gene		
NCB	Needle core biopsy		
NASH	Non alcoholic steatohepatitis		
NSD	Non significant difference		
NCCTG	North central cancer treatment group		
OLT	Orthotopic liver transplantation		

PEI	Percutaneous ethanol injection	
PS	Performance status	
P-gp	P-glycoprotein	
PVE	Portal vein embolization	
PET	Positron emission tomography	
PBC	Primary biliary cirrhosis	
PSC	Primary sclerosing cholangitis	
TNM: T	Primary tumor	
PT	Prothrombim time	
RFA	Radio frequency ablation	
N	Regional lymph nodes	
RRs	Response rates	
SE	Spin echo	
SIRS	Systemic inflammatory response syndrome	
^{99M} TC	Technetium	
Th1	T-helper 1	
TAE	Transarterial emblization	
TACE	Transarterial chemo emblization	
US	Ultra sound	
UNOS	United networks for organ sharing	
USA	United states	
VEGF	Vascular endothelial growth factor	
Wnt	Wingless – type	

List of Figures

Figures Number		Page
Fig. (1)	The surface marking of the liver	3
Fig. (2)	The postero-inferior (visceral) surface of the liver	3
Fig. (3)	The liver viewed from the front	5
Fig. (4)	The liver viewed from the back .	6
Fig. (5)	The main fissure of the liver	7
Fig. (6)	Anterior, posterior and inferior aspects of the liver	8
Fig.(7)	Diagrammatic representation of the eight segments of the liver	11
Fig. (8)	A 2.0 cm hepatocellular carcinoma arising in a chronic viral hepatitis; the tumor, which had a predominant acinar architecture, produced abundant bile	37
Fig. (9)	Well demarcated fibrolamellar carcinoma with central scar; the surrounding liver is normal	38
Fig. (10)	The tumor cells arranged in trabecular, and pseudoglandular patterns.	40
Fig. (11)	The tumor cells has invasion through the fibrous capsule of tumor into the nearby liver cells.	40

Figures Number		Page
Fig. (12)	Unenhanced CT scan shows central calcification within a well-demarcated mass	43
Fig. (13)	Sonogram shows an echo poor mass at the tip of the hepatic angle	58
Fig. (14)	Sonogram shows a single mass possessing a thin echo-lucent rind in the right hepatic lobe	59
Fig. (15)	Grey-scale ultrasound of a hepatocellular carcinoma of 2.3 cm in diameter in a 67-year-old male patient	59
Fig. (16)	Computed tomography image in the portalvenous	63
Fig. (17)	Arterial phase in a multidetector-computed tomography scan of a typical	64
Fig. (18)	Magnetic resonance imaging (MRI)	66
Fig. (19)	Picture shows left lateral segmentectomy	93
Fig. (20)	Percutaneous ablation of HCC using radiofrequency	101
Fig. (21)	Images of a 33-year-old man with chronic hepatitis B	104
Fig. (22)	Images of a 33-year-old man with chronic hepatitis B.	104
Fig. (23)	An example of transarterial embolization.	114

List of Tables

Table number		Page
Table (1)	Child Pough risk staging	27
Table (2)	Okuda Classification of hepatocellular carcinoma	46
Table (3)	Barcelona Clinic Liver Cancer (BCLC) Staging Classifcation	48
Table (4)	CLIP Classification: 0 – 6 points	51
Table (5)	Selection of the extent of liver resection in patients with HCC and cirrhosis	82
Table (6)	Selection of the extent of liver resection in patients with HCC and cirrhosis	83
Table (7)	Child's-Turcotte-Pugh Classification of Severity of Liver disease	84

CONTENTS

Introduction	I
Aim Of The Work	IV
Anatomy	1
Pathophysiology	19
Diagnosis of HCC	53
Treatment	79
Summary	126
Conclusion	129
References	130
Arabic Summary	150

INTRODUCTION

Hepatocellular carcinoma (HCC) is a common cancer that typically occurs in the setting of cirrhosis and chronic hepatitis virus infections.

Hepatitis B and C account for approximately 80% of cases worldwide. HCC is currently the fifth most common malignancy in men and the eighth in women worldwide; its incidence is increasing dramatically in many parts of the world (*Snowberger*, et al. 2007).

The incidence of HCC has both geographic and time-dependent variation related to the prevalence of viral hepatitis in the population over recent decades (*Durand*, et al. 2007).

All HCC occurs in the setting of cirrhosis or advanced fibrosis. Thus, any cause of liver disease that can result in cirrhosis should be considered a potential risk factor for HCC. Not surprisingly, the most common causes of cirrhosis (hepatitis B virus [HBV], HCV, and alcohol) are also the most common causes of HCC (Fuss, et al. 2005).

HCC is seen less commonly, in genetic hemochromatosis, autoimmune hepatitis, primary sclerosing cholangitis, nonalcoholic fatty liver disease, alpha-1 antitrypsin deficiency, Wilson disease, primary biliary cirrhosis, and certain metabolic liver diseases (*Ries, et al. 2008*).

Recognition of those at risk and early diagnosis by surveillance with imaging, with or without serologic testing, are extremely important (*Krinsky and Taouli, 2006*).

AFP has been used as a serum marker for HCC for decades. In the years prior to sensitive imaging techniques any focal lesion in a patient with cirrhosis should be suspected of being HCC. The ability of

abdominal imaging to detect HCC has improved dramatically over the last 2 decades (*Daniele*, et al. 2005).

The role of biopsy in confirming HCC is controversial. While biopsy was often required for definitive diagnosis before the advent of more sensitive and specific imaging tests (*Liaw*, et al. 2006).

Many highly effective and even curative therapies are now available that include resection and liver transplantation. Appropriate application of these interventions offers hope of prolonged survival to many patients with this otherwise lethal complication of liver disease (Colli, et al. 2006).

Surgical resection of HCC, either partial hepatectomy or total hepatectomy with transplantation, offers the best long-term recurrence-free outcome (60%–70% 5-year survival) (*Lopez, et al. 2006*).

Locoregional ablation refers to a variety of intervention techniques that specifically target a tumor or a tumor and surrounding tissue with a process to directly destroy the tumor. Numerous methods of ablation have been developed. Percutaneous ethanol injection utilizes direct injection of absolute ethanol into the tumor, resulting in dehydration of cells and protein degradation with coagulative necrosis of the tumor and surrounding tissue (*Lopez, et al. 2006*).

Temperature-based methods, including cryoablation, laser-induced thermal ablation, or microwave thermal ablation, utilize drastic temperature changes to cause cell disruption and necrosis (**Avila**, et al. 2006).

Recently, several technological modifications of external beam radiation have allowed delivery of tumoricidal radiation doses the most popular methods of locoregional ablation are radiofrequency ablation (RFA) and transarterial chemoembolization (TACE) (Sutherland, et al. 2005).

Most HCC tumours are highly vascular with rich blood supply making transarterial chemoembolization an attractive therapeutic option (Sangiovanni, et al. 2006).

Aim of the work

To review different modalities of management of hepatocellular carcinoma in cirrhotic patients

ANATOMY

Gross anatomy of the liver:

The liver can be described according to different aspects:

- 1. Morphological anatomy:
- 2. Functional or surgical anatomy:

Morphological anatomy:

The liver is the largest gland in the body, weighs approximately 1200-1500 gm and receives about 1500ml of blood per minute. The wedge-shaped organ occupies most of the right hypochondrium and epigastrium. It has two surfaces, diaphragmatic and visceral (inferior). Its upper border lies anteriorly at the level of fifth or sixth intercostal space (*Chummy*, 1999).

Development:

The liver develops by proliferation of cells from the blind ends of a Y shaped diverticulum which grow from the foregut into the septum transversum. The cranial part of the septum transversum becomes the pericardium and the diaphragm while the caudal part becomes the ventral mesogastrium into which the liver grows (*Chumny*, 1999).

Surface anatomy (of anterior surface)

1. Upper border:

A line, concave upwards, which extends from the left 5th rib in midclavicular line to the 4th right intercostal space in midclavicular line, passing by the xiphisternal joint, then continuous to the right 7th rib in

midaxillary line.

2. Right border:

Vertical line from right 7th to 11th ribs in midaxillary line then extends for 1/2an inch below costal margin.

3. Inferior border:

Oblique line which joins the ends of upper and right borders crossing the left 8th then right 9th costal margin, (shilla and Dolley, 1997). (Fig.1)

Surfaces of the liver:

The diaphragmatic surface is boldly convex, modulated to the undersurface of diaphragm, which separates it from pleura, lungs, pericardium and heart. It is descriptively subdivided into anterior, superior, posterior and right surfaces, which merge into one another without any clear demarcations. The inferior or (visceral) surface, is moulded to adjacent viscera and is therefore irregular in shape, it lies in contact with the abdominal part of the esophagus, the stomach, the duodenum, the right colic flexure, the right kidney and supra-renal gland, and the gall bladder. The porta hepatis, or the hilum of the liver, is found on the inferior surface and lies between the fossa for the gall bladder and the upper end of the fissure for ligamentum teres (Fig.2) (*Chummy*, 1999).