

(وَقُلِ الْمُعَلِّمِ الْهُ وَالْمُؤْمِدُونَ مَا لَمُؤْمِدُونَ مَا لَمُؤْمِدُونَ اللهُ وَالْمُؤْمِدُونَ وَسَعْرَدُونَ إِلَى عَالِمِ الْغَذِيبِ وَسَعْرَدُونَ إِلَى عَالِمِ الْغَذِيبِ وَالشَّمَاحَةِ فَيُنَوِّدُونَ إِلَى عَالِمِ الْعَذِيبِ وَالشَّمَاحَةِ فَيُنَوِّدُونَ إِلَى عَالِمِ الْعَذِيبِ وَالشَّمَاحِينَ إِلَى اللهُ اللهِ الْعَدْدِينِ إِلَى اللهِ الْعَدِينَ عَلَيْهِ اللهِ الْعَدْدِينَ إِلَى اللهِ الْعَدْدِينَ إِلَى اللهِ اللهِ

صدق الله العظيم

# Dedication

This thesis work is dedicated to my lovely husband,
Mahmoud, who has been a constant source of support
and encouragement during the challenges of graduate
school and life. I am truly thankful for having you in
my life. This work is also dedicated to my parents who
have always loved me unconditionally and whose good
examples have taught me to work hard for the things that
I aspire to achieve.

#### **Abstract**

Graphene is a carbon material with a two – dimensional (2D)  $\rm sp^2$  – hypridized carbon atoms in a honey camd lattice, and it is the bulding block for the graphite materials of all other dimension. Graphene has many applications owing to its chemical, mechanical and electronic properities.

The reduced graphene oxide material was prepared via the reduction of the graphite oxide by applying the environmental friendly methods using either green tea and / or ethanol as reducing agents.

The graphite oxide was prepared by the improved Hummer's method. The degree of graphite oxidation is systematically controlled according to the change in the oxidation time from (6 to 24hrs), KMnO<sub>4</sub>: graphite wt. ratio from (1:1 to 3:1) and in the presence of phosphoric acid. The prepared graphite oxide samples have been characterized by applying different techniques; XRD, FTIR, TGA, zeta potential, and TEM.

The graphite oxide sample that prepared through the oxidation process using 3:1 KMnO4: graphite ratio during 24hrs was selected to prepare the reduced graphene oxide samples.

The use of the green tea as reducing agent is studied by applying either refluxing, and/or sonicating technique.

In addition, the use of the extracted poly phenol green tea is also studied.

On the other hand, the solvothermal reduction method is carried out using ethanol as reducing agent under the experimental reaction conditions; temperature range 150-250°C, time 2-6hrs, and the amount of graphite oxide from 1-5 gm.

The reduced graphene oxide samples which can be obtained through the exfoliation- reduction of the prepared graphite oxide samples are investigated using XRD, FTIR, TGA, BET-surface area and TEM techniques. Moreover, the ethanol converted products are evaluated using gas chromatographic analysis.

**Keywords**: graphite. graphite oxide, reduced graphene oxide, green tea, solvothermal method, ethanol, oxidation-reduction reaction.

# CONTENTS

| Aim of th   | e present work                                                 |    |
|-------------|----------------------------------------------------------------|----|
| CHAPTE      | ER I                                                           | 1  |
| I. INT      | RODUCTION                                                      | 1  |
| I.1.        | Graphite                                                       | 3  |
| <b>I.2.</b> | Graphite oxide                                                 | 5  |
| I.2.1.      | Preparation of the Graphite oxide material                     | 7  |
| I.3.        | Graphene                                                       | 9  |
| I.3.1.      | Preparation of the graphene material                           | 12 |
|             | A- Exfoliation and cleavage technique                          | 14 |
|             | B- Thermal chemical vapor deposition technique                 | 15 |
|             | C- Un-zipping CNTs technique                                   | 16 |
|             | D- Chemical reduction of graphene oxide (GO)                   | 17 |
| I.3.2.      | Application of the graphene-based nano-materials               | 19 |
|             | A- Metal-free graphene-based materials                         | 20 |
|             | B- Metal supported graphene-based material                     | 24 |
|             | i- Cross-coupling reaction                                     | 25 |
|             | ii- Energy conversion                                          | 25 |
|             | iii- Photo catalytic application                               | 26 |
| CHAPTE      | ER II                                                          |    |
| II. EXP     | ERIMENTAL                                                      | 28 |
| II.1.       | Preparation of graphite oxide sample                           | 28 |
| II.2.       | Preparation of reduced graphene samples                        | 29 |
| II.2.1.     | Green tea as reducing agent                                    | 29 |
|             | A- Reflux technique                                            | 29 |
|             | B- Sonication technique                                        | 30 |
|             | C- Extracted polyphenol from green tea                         | 30 |
| II.2.2.     | Super critical ethanol as reducing agent (solvothermal method) | 31 |

i

| II 2    | Characterization mathed                                                 | 22 |
|---------|-------------------------------------------------------------------------|----|
| II.3.   | Characterization method                                                 | 32 |
| II.3.1. | X-ray diffraction analysis (XRD)                                        | 32 |
| II.3.2. | Fourier transformer infrared spectroscopy (FTIR)                        | 33 |
| II.3.3. | Thermal gravimetric analysis (TGA)                                      | 33 |
| II.3.4. | High resolution transmission electron microscopy (HRTEM)                | 33 |
| II.3.5. | Surface analysis using N <sub>2</sub> adsorption technique              | 34 |
| II.4.   | Gas chromatographic analysis (GC)                                       | 34 |
| CHAPTE  | R III                                                                   |    |
| III. R  | ESULTS AND DISSCUSSION                                                  | 37 |
|         | Characterization of the graphite and the prepared raphite oxide samples | 37 |
| III.1.1 | . X-ray diffraction analysis (XRD)                                      | 37 |
|         | A- Graphite material                                                    | 37 |
|         | B- Graphite oxide                                                       | 38 |
|         | a- Effect of oxidation time                                             | 38 |
|         | b- Effect of KMnO <sub>4</sub> :graphite weight ratio                   | 40 |
|         | c- Effect of adding phosphoric acid                                     | 41 |
| III.1.2 | . Fourier transform infrared spectroscopy                               | 42 |
|         | A-Graphite sample                                                       | 43 |
|         | B-Graphite oxide                                                        | 43 |
|         | a-Effect of oxidation time                                              | 43 |
|         | b- Effect of KMnO <sub>4</sub> :Graphite weight ratio                   | 45 |
|         | c- Effect of adding phosphoric acid                                     | 45 |
| III.1.3 | . Thermal analysis of the prepared samples                              | 46 |
|         | A- Graphite sample                                                      | 46 |
|         | B- Graphite oxide                                                       | 47 |
|         | a- Effect of oxidation time                                             | 47 |
|         | b-Effect of KMnO <sub>4</sub> :graphite weight ratio                    | 50 |
|         | c-Effect of adding phosphoric acid                                      | 53 |
|         |                                                                         |    |

| III.1.4.      | Textural properties                                           | 54  |
|---------------|---------------------------------------------------------------|-----|
| III.1.5.      | Transmission electron microscopy (TEM) of the                 | 61  |
|               | prepared graphite oxide.                                      | 01  |
| III.1.6.      | Zeta potential of the prepared graphite oxide samples.        | 62  |
| III.2.0.      | Preparation of reduced graphene oxide                         | 64  |
| III.2.1.      | Green tea as reducing agent                                   | 64  |
|               | A- Reflux technique                                           | 65  |
|               | B- Sonication technique                                       | 66  |
|               | C- Extracted poly phenol from green tea                       | 67  |
| III.2.2.      | Super critical ethanol as reducing agent                      | 73  |
|               | A- The structural phase changes of the reduced graphite oxide | 73  |
|               | a- Effect of reaction temperature                             | 73  |
|               | b- Effect of reaction time                                    | 78  |
|               | c- Effect of graphite oxide: ethanol ratio                    | 81  |
|               | B- Evaluation of the ethanol converted products               | 90  |
|               | i- Effect of reaction temperature                             | 90  |
|               | ii- Effect of reaction time                                   | 94  |
|               | iii- Effect of graphite oxide amount                          | 96  |
| <b>CHAPTE</b> | R IV                                                          |     |
| REACTIO       | ON MECHANISMS                                                 | 98  |
| IV.1.0.       | Graphite oxidation reaction                                   | 100 |
| IV.1.1.       | Exfoliation and reduction reaction of graphite oxide          | 102 |
|               | a- Exfoliation reaction                                       | 102 |
|               | b-Reduction reaction                                          | 104 |
| CHAPTE        | R V                                                           | 109 |
| SUMMER        | Y AND CONCLUSIONS                                             | 109 |
| REFEREN       |                                                               | 117 |
| Arabic su     | mmarv                                                         | I   |

### **List of Figures**

| NO.            | Discriptions                                                                                                                                                        | page |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Fig. 1         | Structure of graphite                                                                                                                                               | 5    |
| Fig. 2         | Structure of graphite oxide                                                                                                                                         | 6    |
| Fig. 3         | Graphene building material                                                                                                                                          | 10   |
| Fig. 4         | XRD pattern of the parent graphite                                                                                                                                  | 38   |
| Fig. 5         | XRD patterns of the parent graphite, and the prepared graphite oxide samples at different oxidation times                                                           | 39   |
| Fig. 6         | XRD patterns of the Parent graphite, and the prepared graphite oxide samples at different KMnO <sub>4</sub> : Graphite Wt. ratio                                    | 41   |
| Fig. 7         | X-ray diffraction patterns of the Parent graphite, and the prepared graphite oxide samples prepared in the absence and presence of H <sub>3</sub> PO <sub>4</sub> . | 42   |
| Fig. 8         | FTIR spectrum of the parent graphite                                                                                                                                | 43   |
| Fig. 9         | FTIR spectra of the parent graphite and the prepared graphite oxide samples at different oxidation time                                                             | 44   |
| Fig. 10        | FTIR spectra of the parent graphite and the graphite oxide samples with different graphite: KMnO <sub>4</sub> ratio                                                 | 45   |
| Fig. 11        | FTIR spectra of the parent graphite and the graphite oxide samples in the presence and absence of phosphoric acid                                                   | 46   |
| Fig. 12        | TGA of the parent graphite sample                                                                                                                                   | 47   |
| Fig. 13        | Effect of oxidation time on weight loss of graphite oxide sample                                                                                                    | 48   |
| Fig. 14        | TGA and dTGA scans of a graphite oxide samples at different oxidation time                                                                                          | 49   |
| Fig. 15        | Effect of oxidation time on the atomic ratio of H/C and O/C                                                                                                         | 50   |
| <b>Fig. 16</b> | Thermal gravimetric analysis of graphite and                                                                                                                        | 51   |

|                | graphite oxide at different KMnO <sub>4</sub> amounts     |     |
|----------------|-----------------------------------------------------------|-----|
| Fig. 17        | TGA and dTGA scans of graphite oxide                      |     |
| Ü              | samples that oxidized by different amount                 | 52  |
|                | of KMnO <sub>4</sub>                                      |     |
| <b>Fig. 18</b> | Effect of KMnO <sub>4</sub> amount on the atomic ratio    |     |
| O              | of H/C and O/C in the graphite oxide                      | 53  |
|                | samples                                                   |     |
| <b>Fig. 19</b> | Thermal gravimetric analysis of graphite                  |     |
|                | oxide samples in the presence and absence                 | 54  |
|                | of phosphoric acid                                        |     |
| <b>Fig. 20</b> | A) N <sub>2</sub> adsorption desorption isotherm, B)      |     |
|                | PSD and C) v-t plot of the prepared graphite              | 60  |
|                | oxide sample                                              |     |
| Fig. 21        | TEM image of graphite oxide                               | 61  |
| <b>Fig. 22</b> | XRD of A- graphite oxide and B- reduced                   | 65  |
|                | graphene oxide                                            | 0.0 |
| <b>Fig. 23</b> | XRD of graphite oxide and the reduced                     | 66  |
| T: 04          | graphene oxide                                            |     |
| <b>Fig. 24</b> | XRD patterns of A- graphite oxide and B-                  | 67  |
| E:- 05         | reduced graphene oxide samples                            |     |
| <b>Fig. 25</b> | Infrared spectra of A- graphite oxide and B-              | 68  |
| Eia 26         | reduced graphene oxide  The TGA and dTGA scans of raduced |     |
| <b>Fig. 26</b> | The TGA and dTGA scans of reduced graphene oxide          | 69  |
| Fig. 27        | $N_2$ adsorption desorption isotherm, B) PSD              |     |
| 11g. 21        | and C) v-t plot of the prepared graphene                  | 70  |
|                | sample                                                    | 70  |
| Fig. 28        | XRD patterns of graphene samples prepared                 |     |
| 1-80           | at different reaction temperature                         | 75  |
| Fig. 29        | FTIR spectra of graphene samples prepared                 |     |
| - <del></del>  | at different reaction temperatures                        | 76  |
| Fig. 30        | TGA and dTGA curves of the reduced                        |     |
| J              | graphene samples at different reaction                    |     |
|                | temperature                                               | 77  |

| Fig. 31        | XRD patterns of graphene samples prepared at different reaction times                                                                    | 79  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Fig. 32</b> | FTIR spectra of graphene samples prepared at different reaction times                                                                    | 80  |
| Fig. 33        | TGA and dTGA curves of graphene samples at different reaction times                                                                      | 81  |
| Fig. 34        | XRD patterns of graphene samples prepared by different amount of graphite oxide                                                          | 82  |
| Fig. 35        | FTIR Spectra of graphene samples at different amount of graphite oxide                                                                   | 83  |
| Fig. 36        | TGA and d TGA curves of graphene samples at different amount of graphite oxide                                                           | 84  |
| Fig. 37        | A) N <sub>2</sub> adsorption desorption isotherm,B) PSD and C) v-t plot of the graphene sample prepared by solvothermal reduction method | 85  |
| Fig. 38        | TEM image of graphene (Ethanol- at temperature=250°c, time=2hrs, amount of graphite oxide=5gms)                                          | 88  |
| Fig. 39        | TEM image of graphene (Ethanol- at temperature=250°c, time=6hrs, amount of graphite oxide=5gms)                                          | 88  |
| Fig. 40        | The conversion and the selectivity of the converted products at different reaction temperatures                                          | 92  |
| Fig. 41        | The conversion and the selectivity of the converted products at different reaction time                                                  | 96  |
| Fig. 42        | The conversion and the selectivity of the converted products at different graphite oxide amount                                          | 97  |
| <b>Fig. 43</b> | Model of graphite oxide sheets                                                                                                           | 102 |
| Fig. 44        | Atomistic model of the graphite oxide                                                                                                    | 106 |

## **List of Tables**

| Table    | Description                                                                                                        | page |
|----------|--------------------------------------------------------------------------------------------------------------------|------|
| Table 1: | Zeta potential (ZP) values of the prepared graphite oxide samples                                                  | 63   |
| Table 2: | BET surface characteristic of the prepared graphite oxide and graphene                                             | 72   |
| Table 3: | BET surface characteristic of the graphite oxide and graphene                                                      | 86   |
| Table 4: | Effect of reaction temperature on the catalytic conversion of ethanol                                              | 91   |
| Table 5: | Effect of reaction time on the catalytic conversion of ethanol at reaction temperature 250°C                       | 95   |
| Table 6: | Effect of graphite oxide amount on the catalytic conversion of the ethanol at reaction temperature 250°C for 6 hrs | 98   |