

Ain Shams University Faculty of Engineering

Design and Production Engineering Department

Study of the Potentiality of Utilization of Alternative Agro Residues in Manufacturing Particleboards

A Thesis Submitted in Partial Fulfilment for the Requirements of the

Degree of Master of Science in Mechanical Engineering

By

Mohamad Samir Ahmad El-Kafafy

Supervised by

Prof. Dr. Hamed I. El-Mously Dr. Iman M. Taha

2015

Statement

This thesis is submitted in partial fulfilment for the degree of Master of Science in design and production engineering, to the faculty of engineering, Ain Shams University. The work included in this thesis was carried out by the author, primarily at the laboratories of the Design and Production Engineering Department, Faculty of Engineering, Ain Shams University. No Part of this thesis has been submitted for degree or qualification at any other university.

Mohamad Samir Ahmad El-Kafafy Signature: Date:

Curriculum vitae

Name: Mohamad Samir Ahmad El-Kafafy

Birth Date: 31-5-1984

Degree: Bachelor Degree in Mechanical Engineering, Power

Section, 2006

Current Job: Consultant, Egyptian Technology Centers for transferring technology and innovation – Ministry of Trade and

Industry

Acknowledgment

I would like to express my gratitude to my academic advisors, Prof. Hamed El-Mously and Dr. Iman Taha. I am extremely thankful to Eng. Bahi Edeen Bakeer for providing his help and support during this work. I also want to appreciate the efforts of Eng. Mahmoud Zakaria and my colleagues in design and production engineering department, faculty of engineering, Ain Shams University, Cairo, Egypt. Lastly, I sincerely thank my family, especially my mother for her understanding and patience.

Abstract

This work targets the testing of the potentiality of utilization of alternative underutilized agro residues in the manufacturing of single layer particleboards.

Selection of agro residues has been based on their large amounts and seasonal availability throughout the year. Tomato stalks (TS) have been selected as they are not utilized among the other crop residues and are open field burnt. Chemical analysis of the stalks was performed to prove their suitability for application. Their cellulose content (43.11) % and lignin (12.2 %) make TS comparable with flax shives. Optical microscope was used to investigate the particles morphology. Specimens of particleboards of various resin/fiber compositions were further prepared by compression molding under different pressures and resin concentrations.

The specimens were further examined for their mechanical and physical properties. Comparisons with the European standards (En 312: 2010) for particleboards show the applicability of TS as a natural fiber resource for commercial particleboard manufacturing.

Statistical analysis was performed. It has been proven that at a constant level of pressure, higher resin content values result in higher values of modulus of rupture, modulus of elasticity, internal bonding and thickness swelling due to increase of bonding force and boards density.

Cost benefit analysis has been carried out to investigate the cost of utilization of tomato stalks for commercial particleboard manufacturing. It was found that tomato stalks with resin on (stage before pressing) cost is 0.25 of cost of casuarina tree particles with resin on.

Contents

Ał	bstract	V
1.	Introduction	1
2.	Literature review	3
	2.1 Particleboards	3
	2.1.1. Particle preparation	4
	2.1.2. Particle classification and conveying	5
	2.1.3. Particle drying	6
	2.1.4. Addition of resins and wax	7
	2.1.5. Mat formation	7
	2.1.6. Hot pressing	8
	2.1.7. Finishing	9
	2.1.8. Properties of particleboard	9
	2.1.9. Particleboards in Egypt	10
	2.2 Resources for particleboard raw material	11
	2.2.1 Land and forestry	11
	2.2.2 Availability of wood resources in Egypt	13
	2.3 Use of alternative materials (other than wood)	15
	2.3.1 Lignocellulosic material	16
	2.3.2 Use of agriculture-residues for particleboard	
	production	17

2	2.3.3 Significance and availability of the plant
	agricultural residues in Egypt
2.4	Tomato plant (botanical description) 19
3. Obj	ective and work plan27
4. Exp	erimental work30
4.1	Materials30
4.2	Characterization of raw materials (tomato stalks)31
	4.2.1 Microscopic investigation
	4.2.2 Chemical composition
	4.2.3 Moisture content31
	4.2.4 Density
	4.2.5 Tensile testing of stalks
4.3	Preparation of tomato stalk particleboards
	specimens 34
	4.3.1 Preparation of tomato stalk particles 35
	4.3.2 Blending of particleboard composition 37
	4.3.3 Particleboard specimens fabrication 38
4.4	Characterization of particleboards 42
	4.4.1 Static bending test42
	4.4.2 Internal bonding test
	4.4.3 Dimensional stability test45
	4.4.4 Density determination

	4.4.5 Statistical analysis of test results	46
5. Res	ults and discussion	48
5.1	Selection of the underutilized agricultural residues .	48
5.2	Characterization of tomato stalks	50
	5.2.1 Macrostructure investigation	50
	5.2.2 Microscopic investigation	52
	5.2.3 Particles density	53
	5.2.4 Chemical composition	54
	5.2.5 Moisture content	54
	5.2.6 Tensile testing of stalks	55
5.3	Preparation of tomato Stalk particleboards	
	specimens	55
	5.3.1 Size reduction of tomato stalk	55
	5.3.2 Blending of particleboard composition	57
	5.3.3 Pressing of tomato stalks particleboard	57
5.4	Characterization of tomato stalk particleboard	58
	5.4.1 Physical properties of tomato stalk	
	particleboards	58
	5.4.1.1 Dimensional stability	58
	5.4.1.2 Density	60
	5.4.2 Mechanical properties of tomato stalks	
	particleboards	61
	5.4.2.1 Modulus of rupture (MOR)	61

	5.4.2.2 Modulus of elasticity (MOE)	62
	5.4.2.3 Internal bond test	63
5.5	Statistical analysis of experimental results	64
5.6	General Discussion	65
5.7	Cost benefit analysis for of tomato stalks	
	utilization in particleboard manufacture	66
6. Con	clusions and future recommendations	69
6.1	Conclusions	69
6.2	Future recommendations	70
Refere	nce	71
Annex	1: European standard for particleboard	
(EN312	2:2010)	81
Annex	2: Field study of sites of tomato plantations in	
Egypt		92
Annex	3: Field visit to agriculture directorate in El-	
Sharkia	ah	98
Annex	4: Chemical composition analysis of tomato stalks	
in the F	Regional Center for Food & Fodders, Agriculture	
Researc	ch Center	. 100
Annex	5: Determination of particles density using ADAM	
EQUIP	PMENT PW254, based on Archimedes principle	. 103
Annex	6: CAD drawing of blender, used in blending of	
TSP co	omposition	. 104

Annex 7: CAD drawing of wooden mold used in pouring
the mix after blending to form the prepress mat 105
Annex 8: CAD drawing of steel plate for pressing TSP
specimens
Annex 9: Calibration of thermal press for both pressure
and temperature
Annex 10: Internal bond test results
Annex 11: The statistical procedures used with the
research results
Annex 12: Comparing more than two unrelated samples:
the Kruskal Wallis H-test
Annex 13: Tomato stalks particleboard specimens'
ingredients 120
Annex 14: Detailed statistical analysis of results 122
Annex 15: Field visit to particleboard plant
Annex 16: Detailed cost benefit analysis calculation of
TSP as replacement for casuarina particleboard (prevailing
material used in PB industry)

List of Abbreviations

PB Particleboard

TS Tomato stalks

TSP Tomato stalks particleboard

 $\label{eq:moral_model} \text{MOR} \qquad \quad \text{Modulus of rupture} \qquad \quad [N/mm^2]$

MOE Modulus of elasticity $[N/mm^2]$

 $\label{eq:linear_loss} \text{IB} \qquad \qquad \text{Internal bond} \qquad \qquad [N/mm^2]$

TS% Thickness swelling [%]

UF Urea - Formaldehyde [%]