

The Protective Role of Sesame Oil on the Fertility of Male Albino Rats Exposed to Penconazole

Thesis Submitted by

Rania Abd Allah Mohamed (M.Sc. in Biochemistry, 2009)

For the Award of the Degree of Doctor of Philosophy of Science in Biochemistry

Under Supervision of

Prof. Dr. Ibrahim H. Borai Prof. of Biochemistry Faculty of Science Ain Shams University Prof. Dr. Azza A. Atef Prof. of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Afaf A. El-Kashoury Prof. of Mammalian Toxicology Central Agric. Pesticides Lab Agric. Res. Center Dr. Mahmoud M. Said Assistant Prof. of Biochemistry Faculty of Science Ain Shams University

Ain Shams University
Faculty of Science
Biochemistry Department
2017

"قَالُوا شُبْحَانَكَ لِنَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْعَلِيمُ الْحَكِيمُ"

صدق الله العظيم (سورة البقرة أية 32)

Biography

Name: Rania Abd Allah Mohamed

Date and Place of Birth: 12/11/76, Cairo, Egypt

Date of Graduation: 2000

Degree Awarded: M.Sc. in Biochemistry, 2009

Grade: Ph.D. in Biochemistry

Declaration

This thesis has not been submitted for a degree at this or any other university

Rania Abd Allah Mohamed

Dedication

I dedicate this work with all my love to my family

Acknowledgment

First of all, cordial thanks are due to **ALLAH**, who enabled me to overcome all the problems, which faced me throughout the work.

Special debt and gratitude are due to **Prof. Dr. Ibrahim Hassan Borai**, Prof of Biochemistry, Faculty of Science, Ain Shams University, for his supervision, support, encouragement, valuable advice and critical reading of the manuscript.

Appreciation and deep thanks go to **Dr. Azza Ahmed Atef**, Prof. of Biochemistry, Faculty of Science, Ain Shams University, for her supervision, encouragement, fruitful advices and critical reading of the manuscript.

I am deeply grateful and indebted to **Dr. Afaf Abd El-Hamid El-Kashoury**, Prof. of Toxicology, Department of Mammalian Toxicology, Central Agricultural Pesticides Lab. (CAPL), for her kind supervision, planning of the study, her great help and constant aid in the practical work during this thesis and valuable suggestions, encouragement, motivation during this work, and critical reading of the thesis.

I would like also to express my deep thanks and appreciation to **Dr. Mahmoud Mohamed Said,** Assistant Prof. of Biochemistry, Faculty of Science, Ain Shams University, for fruitful discussion, efforts, practical help, valuable suggestion, guidance through the work and critical reviewing of the thesis.

I would like, also, to express my sincere thanks and deep gratitude to **Dr. Islam Noeman Nasr**, former Head of Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticides Lab, for his practical help. I would like to acknowledge the valuable histological comments provided by Dr Adel M. Bakeer, Prof. of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt.

Thanks are also extended to the head and all members of Biochemistry Department, Faculty of Science, Ain Shams University.

Grateful thanks for Director of Central Agricultural Pesticides Lab., Head of Mammalian and Aquatic Toxicology Department. Special thanks to my friends in Mammalian and Aquatic Toxicology Department for their help.

Contents

Abstract		
List of Tables	i	
List of Figures	iii	
List of Abbreviation	a	
Chapter I: Introduction and Aim of the Work		
Introduction	1	
Aim of the work	5	
Chapter II: Review of Literature		
Introduction	6	
The hypothalamic-pituitary-gonadal axis	7	
Feedback control of gonadotropins	8	
The hypothalamic-pituitary-thyroid axis	11	
Biosynthesis of thyroid hormones	11	
Feedback control of thyroid hormones	13	
The male reproductive tract	15	
Hormonal factors that stimulate		
spermatogenesis	19	
Biosynthesis and mode of action of		
testosterone in testes	22	
Site of estrogen biosynthesis in testes	23	
Endocrine disruptors	26	
Routes of exposure to endocrine disruptors		
Mechanism of action EDCs		
Potential effect of endocrine disruptor on male		
reproductive tract	31	
Oxidative stress	31	
Enzymatic antioxidants	34	
Non-enzymatic antioxidants	34	
Pesticides toxicity	36	
Conazole toxicity	37	
Penconazole	39	
Effect of conazole on fertility	45	
Effect of conazole on reproductive and sex		
hormones	47	

Effect of conazole on thyroid hormones	50
Effect of conazole on oxidative status of testes	51
Sesame oil	52
Effect of sesame oil on fertility	54
Chapter III: Materials and Methods	
3.1- Materials	56
3.1.1- Experimental animals	56
3.1.2- Chemicals	56
a. Penconazole	56
b. Sesame seed oil	57
3.1.3- Experimental design	57
a- Acute oral toxicity study	57
b- Experimental Study	58
3.1.4- Collection of blood and sampling	60
3.1.5- Collection of body organs	60
3.1.6- Preparation of testicular tissue	
homogenate	60
3.1.7- Extraction of vitamin A and E from	
testicular tissue	61
3.2- Methods	61
3.2.1- Fertility related parameters	61
a) Estimation of sperm concentration	61
b) Assessment of sperm motility	62
c) Assessment of sperm viability	62
d) Assessment of sperm morphology	62
3.2.2- Biochemical studies	63
3.2.2.1- Blood Studies	63
a) Determination of serum total testosterone	
level	63
b) Determination of serum estradiol level	65
c) Determination of serum follicle	
stimulating hormone level	66
d) Determination of serum luteinizing	
hormone level	69
e) Determination of serum thyroxine level	72

f) Determination of serum triiodothyronine	75
level	
3.2.2.2- Tissue Studies	77
a) Determination of testicular	
malondialdehyde level	77
b) Determination of testicular reduced	
glutathione level	79
c) Estimation of testicular total protein	
concentration	81
d) Determination of testicular catalase	
activity	84
e) Determination of testicular superoxide	
dismutase activity	86
f) Estimation of testicular vitamin C	
concentration	88
g) Determination of testicular vitamin E	
concentration	91
h) Estimation of testicular vitamin A	
concentration	93
3.2.2.3- Determination of penconazole	
concentration in testes and plasma	94
3.3. Histological Studies	96
3.4. Statistical Analysis	97
Chapter IV: Results	98
Chapter V: Discussion	139
Conclusion	168
Recommendation	169
Summary	170
References	175
Arabic Abstract	
Arabic Summary	

List of Tables

Table No.		Pages
(1)	: Table for calculation of median lethal dose.	1 59
(2)	: Detremination of the acute toxicity following a single oral ascending penconazole dose in rats.	
(3)	: The percentage survival of rats at the end of the treatment period (12 weeks) in the different groups.	
(4)	: Effect of treatment with sesame oil and/or penconazole on body weight, relative and absolute testis and epydidymus weights in male rats.	3
(5)	: Effect of treatment with sesame oil and/or penconazole on fertility indices in male rats.	
(6)	: Effect of treatment with sesame oil and/or penconazole on the level of serum testosterone, E ₂ , FSH and LH in male rats.	f
(7)	: Effect of treatment with sesame oil and/or penconazole on the level of serum T ₃ and T ₄ in male rats.	
(8)	Effect of treatment with sesame oil and/or penconazole on testicular MDA and GSH as well as CAT and	•

SOD activities in male rats.

(9)	: Effect of treatment with sesame oil and/or penconazole on testicular vitamins (A, C and E) in male rats.	122
(10)	: Recovery rate of penconazole.	126

List of Figures

Figure		Pages
NO.		
(1)	: Histological structure of the	
	pituitary gland	7
(2)	: The hypothalamic-pituitary	
(0)	gonadal axis	10
(3)	: Chemistry of thyroxine (T_4)	10
	and triiodothyronine (T_3)	13
(4)	formation	
(4)	: Thyroid system diagram and feedback mechanism	14
(5)	: Internal structure of the testes	14
(5)	and cross section of a	
	seminiferous tubule	17
(6)	: Schematic diagram illustrating	1 /
(0)	the morphological structure of	
	adult Sertoli cells and their	
	interactions with the different	
	germ cells	18
(7)	: The stages of spermatogenesis	20
(8)	: Anatomical structure of the	-
、 /	epydidymus	21
(9)	: Biosynthesis of testosterone	
` '	from cholesterol	23
(10)	: Schematic diagram of the	
	actions of testosterone and	
	dihydrotestosterone	24
(11)	: Estrogen source and targets in	
	the reproductive male tract.	25
(12)	: Outline of normal hormonal	
	response and EDCs	
	interference with hormone	
	receptors	30

(13)	: Scheme of harmful effects of reactive oxygen species (ROS)	
	on male fertility	33
(14)	: Antioxidant scavenging path-	
	ways of free radicals by	2.4
(15)	antioxidant enzymesBiosynthesis of phytosterols,	34
(13)	ergosterol, and mammalian sex	
	steroid hormones	38
(16)	: Proposed metabolic pathways of	
(17)	penconazole	44
(17)	: Structure of penconazole.	58
(18)	: Standard curve of bovine serum	
	albumin by Bradford method.	84
(19)	: Statistical significance of body	
	weight in different groups.	103
(20)	: Statistical significance of	
,	absolute testes weight in	
	different groups.	103
(21)	: Statistical significance of	
	relative testes weight in	
	different groups.	104
(22)	: Statistical significance of	
` ,	absolute epididymus weight in	
	different groups.	104
(23)	: Statistical significance of	
	relative epididymus weight in	
	different groups.	105
(24)	: Statistical significance of sperm	
	count in different groups.	108

(25)	:	Statistical significance of sperm motility in different groups.	108
(26)	:	Statistical significance of sperm viability in different groups.	109
(27)	:	Statistical significance of abnormal forms of sperm in different groups.	109
(28)	:	Statistical significance of serum testosterone level in different groups.	112
(29)	:	Statistical significance of serum E_2 level in different groups.	112
(30)	:	Statistical significance of serum FSH level in different groups.	113
(31)	:	Statistical significance of serum LH level in different groups.	113
(32)	:	Statistical significance of serum T_3 level in different groups.	116
(33)	:	Statistical significance of serum T ₄ level in different groups.	116
(34)	:	Statistical significance of testicular MDA level in different groups.	119
(35)	:	Statistical significance of testicular GSH level in different groups.	119
(36)	:	Statistical significance of testicular SOD activity in different groups.	120
		2	