

CONTRIBUTION OF INNER STIRRUPS WITH THE HANGER STEEL REINFORCEMENT ON THE BEHAVIOUR OF LEDGE BEAM

BY Yasser EL Sayed EL Badawy

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of doctor of philosophy in Civil Engineering (Structural)

Supervised by

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures Ain Shams University Faculty of Engineering

Dr. Mohamed Nabeel Mohamed

Dr. of Reinforced Concrete Structures Ain Shams University Faculty of Engineering

Dr. Ezz El-Deen Mostafa Salah

Dr. of Reinforced Concrete Structures Ain Shams University Faculty of Engineering

> Ain Shams University Faculty of Engineering Cairo 2017

APPROVAL SHEET

Thesis	: Doctor of Philosophy in Civ (Structural)	il Engineering
Student Name Thesis Title	 Yasser El Sayed El Badawy Mohammed Nasar Contribution of Inner Stirrups with the Hanger Steel Reinforcement on the Behaviour of Ledge Beam 	
Examiners Con	nmittee:	<u>Signature</u>
	Fanous orced Concrete Structures ering - Iowa State University – U	JSA
Professor of Reinf	sein Abdel Azim Zahir orced Concrete Structures ering - Ain Shams University	•••••••••••••••••••••••••••••••••••••••
Professor of Reinf	Jussein Hosny Khalil Forced Concrete Structures Pering - Ain Shams University	•••••••

Date: 28 / 12 / 2017

AUTHOR

Name : Yasser El Sayed El Badawy Mohamed

Date of birth : 15 November 1978

Place of birth : Cairo, Egypt

Academic Degree: B.Sc. & M.Sc. in Structural Engineering

University : Ain Shams University

Date : June 2000 - October 2007

Current job : Structural Senior Engineer – Enppi

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, on for the degree of doctor of philosophy in Civil Engineering (Structural).

The experimental work included in this thesis was carried out by the author at the Housing and Building National Research Center lab, Giza, Egypt

No part of this thesis has been submitted for a degree or qualification at any other University or Institute.

Date : 28 / 12 / 2017

Signature : Yasser Badawy

Name : Yasser El Sayed El Badawy

ACKNOWLEDGMENTS

I would like to express my sincerest appreciation to my advisor, Prof. Dr. Ayman Hussein Hosny. I will fondly remember the hours upon hours of conversations with him discussing finite elements, reinforced concrete, and many other non-technical topics.

I would also like to extend sincere thanks to my advisors, Dr. Mohamed Nabeel Mohamed and Dr. Ezz El-Deen Mostafa for their guidance, expert instruction, and the investments they have made in me throughout the research duration, giving me the opportunity to be involved in such interesting research.

Many people supported me in ways beyond what I could have asked for during the completion of this thesis. The support of Dr. Mahmoud Ramzy, lecturer assistant, HBRC, significantly contributed to my success.

I would not be where I am today if it weren't for the support and love of my mother. Thank you for always helping me be my best. Most importantly, I would like to thank my wife, for her unwavering love and support throughout the completion of this thesis. I lovingly dedicate this to her.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

Abstract of the PHD. Thesis Submitted by Eng. / Yasser El sayed El badawy

Title of the thesis:

CONTRIBUTION OF INNER STIRRUPS WITH THE HANGER STEEL REINFORCEMENT ON THE BEHAVIOUR OF LEDGE BEAM

Supervisors:

Prof. Dr. / Ayman Hussein Hosny Dr. / Mohamed Nabeel Mohamed Dr. / Ezz El-Deen Mostafa Salah

ABSTRACT

Ledge beams are commonly used as spandrels in precast concrete structures. The design of ledge beams according to the ACI Building code and PCI assumes that the outer branches of vertical stirrup are resisting torsion stress and acting as a hanger for the ledge part. The contribution of the inner vertical branches of stirrups as a hanger for the ledge part is neglected. Therefore, the outer vertical stirrups have a great amount with respect to the internal stirrups.

The experimental program was designed to study the contribution of the internal vertical stirrups on the hanging action of the ledge. The test specimens consisted of six simply supported beams with 2700 mm span. All beams have a total height of 380 mm and a web width of 250 mm. The heights of the ledge part were 140 mm and their projection was 250 mm.

The main variables are the distribution of internal vertical stirrups and the eccentricity of vertical loads. The specimens were designed to ensure that the ultimate failure load of the ledge part due to yielding of the vertical hanger outer stirrups according to the ACI and PCI was smaller than the ultimate flexural and punching shear failure loads of the specimens.

To evaluate the results of the tested beams, a finite element program was used to simulate the beams by using ABAQUS program. Both the properties of steel reinforcement and concrete were simulated to represent the actual behavior of the tested beams.

The finite element models results were verified against the experimental results and showed a good agreement with the tested beam results.

A parametric study was established to take other variables which are not considered in the experimental program.

Research findings were used to propose equations; for the estimation of the effective width of inner stirrups, and to predict the hanger steel capacity of the ledge beam considering the contribution of the inner stirrups.

Key Words: Hanger steel reinforcement, Shear reinforcement, Ledge beam & Reinforced concrete.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	i
ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	xii
CHAPTER 1 INTRODUCTION	1
1.1. General	1
1.2. Objectives	2
1.3. Scope and Contents	3
CHAPTER 2 LITERATURE REVIEW	5
2.1. Introduction	5
2.2. Modes of Failure	5
2.3. Design Procedure	8
2.3.1. PCI Design Handbook 2010	8
2.3.2. PCA Notes (ACI 318 -14)	13
2.4. Published Research	14
CHAPTER 3 EXPERIMENTAL PROGRAM	22
3.1. Introduction	22
3.2. Specimens Details	22
3.3. Material Properties	30
3.3.1. Concrete	30
3.3.2. Steel Reinforcement	31
3.4. Formwork	33
3.5. Fabrication of Test Specimens	33
3.6. Test setup and Loading program	35
3.7. Instrumentation	37
3.7.1. Load Cell	37
3.7.2. LVDTs Locations of Test Specimens	37
3.7.3. Strain Gauges	38
3.7.4. Data Acquisition	41

CHAPTER 4 ANALYSIS AND DISCUSSION OF EXPERMINTAL R	ESULTS 42
4.1. Introduction	42
4.2. Ledge Behavior	42
4.2.1. Crack Initiation and Propagation	42
4.2.2. Crack Pattern and Failure Mode	43
4.2.2.1 Control specimen (Beam A1)	48
4.2.2.2 Effect of inner stirrups (Beams A2, A3 and A4)	49
4.2.2.3 Effect of load eccentricity (Beams A5 and A6)	54
4.2.3. Deformations of Tested Specimens	58
4.2.3.1 Effect of inner stirrups (Beams A2, A3 and A4)	58
4.2.3.2 Effect of load eccentricity (Beams A5 and A6)	61
4.2.4. Strain of Steel Stirrups of Tested Specimens	64
4.2.4.1 Control specimen (Beam A1)	64
4.2.4.2 Effect of inner stirrups (Beams A2, A3 and A4)	65
4.2.4.3 Effect of load eccentricity (Beams A5 and A6)	69
CHAPTER 5 FINITE ELEMENT MODELING	71
5.1. Introduction	71
5.2. Finite Element Model	73
5.3. Material model	75
5.3.1. Concrete Modeling	75
5.3.1.1. Concrete in Compression	75
5.3.1.2. Concrete Failure Modeling	77
5.3.1.3. Concrete in Tension	79
5.3.2. Steel Modeling	80
5.4. Interactions	81
5.5. Loading and boundary conditions	82
5.5.1. Applied Loads	82
5.5.2. Support Modeling	83
5.6. Validation of Finite Element Model	85
5.6.1. Introduction	85
5.6.2. Failure Loads	85
5.6.3. Load – Deflection Behavior	87
5.6.4. Tensile Steel Strain	99

5.6.4.1. Control specimen (Beam A1)	99
5.6.4.2. Effect of inner stirrups (Beams A2, A3 and A4)	101
5.6.4.3. Effect of load eccentricity (Beams A5 and A6)	108
.০,২,০ Failure Modes	111
5.6.5.1. Steel Hanger Failure	111
5.6.5.2. Punching Shear Failure	112
5.6.6. Model Validity	113
CHAPTER 6 PARAMERIC STUDY AND DESIGN GUIDELINES	114
6.1. Introduction	114
6.2. Material Properties	117
6.3. Results	117
6.3.1. Effect of Inner Stirrups Contribution	126
6.4. Design Guidelines	130
CHAPTER 7 SUMMARY AND CONCLOUSION	143
7.1. Summary	143
7.2. Conclusions	144
7.3. Future Work	146
REFERENCES	147
A PPENDICES	149

LIST OF FIGURES

Figure 1.1 – L - shaped spandrels used in parking structures	1
Figure 2.1 - Inner and end location failure surfaces (Raths, 1984)	6
Figure 2.2 - PCI idealized failure surface at inner and end	6
Figure 2.3 - PCA punching shear surface (ACI 318-14)	7
Figure 2.4 - Failure modes of beam ledge (ACI 318-14)	8
Figure 2.5 - Independent failure (Nafadi et al. 2013)	0
Figure 2.6 - Overlapped failure (Nafadi et al. 2013)	0
Figure 2.7 - Design of transverse bending of ledge	1
Figure 2.8 - Ledge hanger steel geometry (PCI design handbook, 2010)	2
Figure 2.9 - Hanger reinforcement to prevent separation of ledge from stem (PCA Notes on	
ACI 318-14)	3
Figure 2.9 - Punching shear failure in the second specimen (Klein, 1986a) 10	6
Figure 2.10 - Punching shear failures near the end and inner locations (Klein, 1986a) 10^{-10}	6
Figure 2.11 - Plan of ledge showing eccentricity of load relative to critical section (Klein,	
1986a)	7
Figure 2.12 - Transverse forces acting on free body of ledge (Klein, 1986a)	8
Figure 3.1 - Statical system of tested specimens 24	4
Figure 3.2 - Concrete dimensions and reinforcement details for specimen (A1)24	4
Figure 3.3 - Concrete dimensions and reinforcement details for specimen (A2)	5
Figure 3.4 - Concrete dimensions and reinforcement details for specimen (A3)	6
Figure 3.5 - Concrete dimensions and reinforcement details for specimen (A4)	7
Figure 3.6 - Concrete dimensions and reinforcement details for specimen (A5)	8
Figure 3.7 - Concrete dimensions and reinforcement details for specimen (A6)	9
Figure 3.8 - Stress Strain Curve for rebar of 8 mm diameter	2
Figure 3.9 - Stress Strain Curve for rebar of 12 mm diameter	2
Figure 3.10 - Stress Strain Curve for rebar of 16 mm diameter	2
Figure 3.11 - Preparation of formwork	3
Figure 3.12 - Placement of reinforcement 34	4
Figure 3.13 - Removing of formwork	4
Figure 3.14 - Loading setup for tested specimens 35	5
Figure 3.15 - Test setup	6
Figure 3.16 - Load eccentricity for specimens 36	6
Figure 3.17 - Locations of deflectometers for specimens	8
Figure 3.18 - Locations of steel strain gauges for beams from A1 to A3	9
Figure 3.19 - Locations of steel strain gauges for beams from A4 to A6	0
Figure 3.20 - Locations of steel strain gauges for the concrete	0

Figure 3.21 - Data acquisition device and channel box	41
Figure 4.1 - Design of hanger steel reinforcement	45
Figure 4.2 - Crack pattern and failure shape for specimen (A1)	49
Figure 4.3 - Crack pattern and failure shape for specimen (A2)	51
Figure 4.4 - Crack pattern and failure shape for specimen (A3)	53
Figure 4.5 - Crack pattern and failure shape for specimen (A4)	54
Figure 4.6 - Crack pattern and failure shape for specimen (A5)	56
Figure 4.7 - Crack pattern and failure shape for specimen (A6)	57
Figure 4.8 - Load versus mid-span vertical deflection - A1 to A4	59
Figure 4.9 - Load versus quad-span vertical deflection - A1 to A4	60
Figure 4.10 - Load versus mid-span lateral deflection - A1 to A4	60
Figure 4.11 - Load versus mid-span vertical deflection - A1, A5 &A6	62
Figure 4.12 - Load versus quad-span vertical deflection - A1, A5 &A6	63
Figure 4.13 - Load versus mid-span lateral deflection - A1, A5 &A6	63
Figure 4.14 - Load versus strains of outer stirrups (ϵ_1) at mid-span - A1 to A4	67
Figure 4.15 - Load versus strains of inner stirrups (ϵ_2) at mid-span – A2 to A4	67
Figure 4.16 - Load versus strains of outer stirrups (e3) at quad-span – A1 to A4	68
Figure 4.17 - Load versus strains of inner stirrups (E4) at quad-span – A2 to A4	68
Figure 4.18 - Load versus strains of stirrups (ε ₁) at mid-span - A1, A5 & A6	
Figure 4.19 - Load versus strains of stirrups (E3) at quad-span - A1, A5 & A6	70
Figure 5.1 – model of ledge beam	74
Figure 5.2 – Finite element mesh of ledge beam	74
Figure 5.3 – Internal steel reinforcement bars used in models	75
Figure 5.4 - Uniaxial compressive stress-strain behavior of ledge beam	77
Figure 5.5 - Damage variable for uniaxial compression	
Figure 5.6 - Damage variable for uniaxial tension	78
Figure 5.7 - Different uniaxial material model for tension softening behavior	80
Figure 5.8 - Bilinear stress-strain curve for steel	81
Figure 5.9 - Host and embedded regions in finite element	82
Figure 5.10 – Concentrated load point of application	83
Figure 5.11 – Vertical restraints of ledge beam	84
Figure 5.12 – Horizontal restraints of ledge beam	84
Figure 5.13 - Experimental versus F.E. in terms of hanger failure loads.	86
Figure 5.14 - Experimental versus F.E. in terms of punching failure loads	87
Figure 5.15 - Load-deflection behavior for beam A1 at mid-span.	90
Figure 5.16 - Load-deflection behavior for beam A2 at mid-span.	90
Figure 5.17 - Load-deflection behavior for beam A3 at mid-span.	91

Figure 5.18 - Load-deflection behavior for beam A4 at mid-span.	91
Figure 5.15 - Load-deflection behavior for beam A5 at mid-span.	92
Figure 5.19 - Load-deflection behavior for beam A6 at mid-span.	92
Figure 5.20 - Load-deflection behavior for beam A1 at quad-span.	93
Figure 5.21 - Load-deflection behavior for beam A2 at quad-span.	93
Figure 5.22 - Load-deflection behavior for beam A3 at quad-span.	94
Figure 5.23 - Load-deflection behavior for beam A4 at quad-span.	94
Figure 5.24 - Load-deflection behavior for beam A5 at quad-span.	95
Figure 5.25 - Load-deflection behavior for beam A6 at quad-span.	95
Figure 5.26 - Load-lateral deflection behavior for beam A1 at mid-span.	96
Figure 5.27 - Load- lateral deflection behavior for beam A2 at mid-span	96
Figure 5.28 - Load- lateral deflection behavior for beam A3 at mid-span	97
Figure 5.29 - Load- lateral deflection behavior for beam A4 at mid-span.	97
Figure 5.30 - Load- lateral deflection behavior for beam A5 at mid-span	98
Figure 5.31 - Load- lateral deflection behavior for beam A6 at mid-span.	98
Figure 5.32 - Load versus strains of outer Stirrups (ϵ_{I}) at mid-span for beam A1	100
Figure 5.33 - Load versus strains of outer Stirrups (\$\epsilon_3\$) at quad-span for beam A1	100
Figure 5.34 - Load versus strains of outer stirrups (ϵ_1) at mid-span for beam A2	102
Figure 5.35 - Load versus strains of outer stirrups (ϵ_1) at mid-span for beam A3	103
Figure 5.36 - Load versus strains of outer stirrups (ϵ_1) at mid-span for beam A4	103
Figure 5.37 - Load versus strains of inner stirrups (ε ₂) at mid-span for beam A2	104
Figure 5.38 - Load versus strains of inner stirrups (ε ₂) at mid-span for beam A3	104
Figure 5.39 - Load versus strains of inner stirrups (ε ₂) at mid-span for beam A4	105
Figure 5.40 - Load versus strains of outer stirrups (83) at quad-span for beam A2	105
Figure 5.41 - Load versus strains of outer stirrups (83) at quad-span for beam A3	106
Figure 5.42 - Load versus strains of outer stirrups (83) at quad-span for beam A4	
Figure 5.43 - Load versus strains of inner stirrups (&4) at quad-span for beam A2	
Figure 5.44 - Load versus strains of inner stirrups (&4) at quad-span for beam A3	
Figure 5.45 - Load versus strains of inner stirrups (&4) at quad-span for beam A4	
Figure 5.46 - Load versus strains of outer stirrups (\$\epsilon\$) at mid-span for beam A5	
Figure 5.47 - Load versus strains of outer stirrups (ε ₁) at mid-span for beam A6	
Figure 5.48 - Load versus strains of outer stirrups (ε ₃) at quad-span for beam A5	
Figure 5.49 - Load versus strains of outer stirrups (ε ₃) at quad-span for beam A6	
Figure 5.50 – Typical longitudinal cracks.	
Figure 5.51 – Typical punching failure cracks.	
Figure 6.1 – All variables of the parametric study.	115

Figure 6.2 - Load versus strains of outer stirrups (ϵ_1) at mid-span - $K1$ to $K4\ldots\ldots$	119
Figure 6.3 - Load versus strains of inner stirrups (ϵ_2) at mid-span – K2 to K4	120
Figure 6.4 - Load versus strains of outer stirrups (ϵ_3) at quad-span – K1 to K4	120
Figure 6.5 - Load versus strains of inner stirrups (ϵ_4) at quad-span – $K2$ to $K4$	121
Figure 6.6 - Load versus mid-span vertical deflection - K1 to K4	121
Figure 6.7 - Load versus quad-span vertical deflection - K1 to K4	122
Figure 6.8 – Effect of (bl/b) & (hl/h) ratios on ledge beams hanger capacity	126
Figure 6.9 - Bei factor versus S _i distance for beams A, K and D.	127
Figure 6.10 - B_{ei} factor versus S_i distance for beams F,M and $H.$	127
Figure 6.11 - Bei factor versus Si distance for beams G, E and J.	128
Figure 6.12 - Bei factor versus Si distance for beams A, F and G.	128
Figure 6.13 - B_{ei} factor versus S_i distance for beams K,M and E .	129
Figure 6.14 - B_{ei} factor versus S_i distance for beams D,H and $J.$	129
Figure 6.15 - The hanger failure load by Eq. (6-2) versus FEA for ledge beams A1 to A4	1134
Figure 6.16 - The hanger failure load by Eq. $(6-2)$ versus FEA for ledge beams K1 to K4	4. 134
Figure 6.17 - The hanger failure load by Eq. (6-2) versus FEA for ledge beams D1 to D4	1135
Figure 6.18 - The hanger failure load by Eq. $(6-2)$ versus FEA for ledge beams F1 to F4	. 135
Figure 6.19 - The hanger failure load by Eq. (6-2) versus FEA for ledge beams M1 to M $$	4.136
Figure 6.20 - The hanger failure load by Eq. $(6-2)$ versus FEA for ledge beams H1 to H4	4. 136
Figure 6.21 - The hanger failure load by Eq. $(6-2)$ versus FEA for ledge beams G1 to G4	4. 137
Figure 6.22 - The hanger failure load by Eq. $(6-2)$ versus FEA for ledge beams E1 to E4	. 137
Figure 6.23 - The hanger failure load by Eq. $(6-2)$ versus FEA for ledge beams J1 to J4.	138
Figure 6.24 - The hanger failure load for ledge beams A1 to A4	138
Figure 6.25 - The hanger failure load for ledge beams K1 to K4.	139
Figure 6.26 - The hanger failure load for ledge beams D1 to D4	139
Figure 6.27 - The hanger failure load for ledge beams F1 to F4.	140
Figure 6.28 - The hanger failure load for ledge beams M1 to M4.	140
Figure 6.29 - The hanger failure load for ledge beams H1 to H4.	141
Figure 6.30 - The hanger failure load for ledge beams G1 to G4.	141
Figure 6.31 - The hanger failure load for ledge beams E1 to E4.	142
Figure 6.32 - The hanger failure load for ledge beams J1 to J4.	142
Figure A.1 - Load versus strains of outer stirrups (ϵ_l) at mid-span - D1 to D4 \dots	149
Figure A.2 - Load versus strains of inner stirrups (ϵ_2) at mid-span – D2 to D4	149
Figure A.3 - Load versus strains of outer stirrups (ϵ_3) at quad-span – D1 to D4	150
Figure A.4 - Load versus strains of inner stirrups (ε4) at quad-span – D2 to D4	150
Figure A.5 - Load versus mid-span vertical deflection - D1 to D4	151
Figure A.6 - Load versus quad-span vertical deflection - D1 to D4	151

Figure A.7 - Load versus strains of outer stirrups (ε ₁) at mid-span - F1 to F4	152
Figure A.8 - Load versus strains of inner stirrups (e2) at mid-span – F2 to F4	152
Figure A.9 - Load versus strains of outer stirrups (ϵ_3) at quad-span – F1 to F4	153
Figure A.10 - Load versus strains of inner stirrups (ε ₄) at quad-span – F2 to F4	153
Figure A.11 - Load versus mid-span vertical deflection – F1 to F4	154
Figure A.12 - Load versus quad-span vertical deflection - F1 to F4	154
Figure A.13 - Load versus strains of outer stirrups (ϵ_{l}) at mid-span - M1 to M4	155
Figure A.14 - Load versus strains of inner stirrups (ϵ_2) at mid-span – M2 to M4	155
Figure A.15 - Load versus strains of outer stirrups (ε ₃) at quad-span – M1 to M4	156
Figure A.16 - Load versus strains of inner stirrups (ε4) at quad-span – M2 to M4	156
Figure A.17 - Load versus mid-span vertical deflection - M1 to M4	157
Figure A.18 - Load versus quad-span vertical deflection - M1 to M4	157
Figure A.19 - Load versus strains of outer stirrups (ϵ_1) at mid-span - H1 to H4	158
Figure A.20 - Load versus strains of inner stirrups (ϵ_2) at mid-span – H2 to H4	158
Figure A.21 - Load versus strains of outer stirrups (ε ₃) at quad-span – H1 to H4	159
Figure A.22 - Load versus strains of inner stirrups (ε4) at quad-span – H2 to H4	159
Figure A.23 - Load versus mid-span vertical deflection - H1 to H4	160
Figure A.24 - Load versus quad-span vertical deflection - H1 to H4	160
Figure A.25 - Load versus strains of outer stirrups (ϵ_l) at mid-span - G1 to G4 \dots	161
Figure A.26 - Load versus strains of inner stirrups (ϵ_2) at mid-span – G2 to G4	161
Figure A.27 - Load versus strains of outer stirrups (ϵ_3) at quad-span – G1 to G4	162
Figure A.28 - Load versus strains of inner stirrups (ϵ_4) at quad-span – G2 to G4	162
Figure A.29 - Load versus mid-span vertical deflection - G1 to G4	163
Figure A.30 - Load versus quad-span vertical deflection - G1 to G4	163
Figure A.31 - Load versus strains of outer stirrups (ϵ_1) at mid-span - E1 to E4	164
Figure A.32 - Load versus strains of inner stirrups (ϵ_2) at mid-span – E2 to E4	164
Figure A.33 - Load versus strains of outer stirrups (ε ₃) at quad-span – E1 to E4	165
Figure A.34 - Load versus strains of inner stirrups (ε4) at quad-span – E2 to E4	165
Figure A.35 - Load versus mid-span vertical deflection - E1 to E4	166
Figure A.36 - Load versus quad-span vertical deflection - E1 to E4	166
Figure A.37 - Load versus strains of outer stirrups (ϵ_1) at mid-span - J1 to J4	167
Figure A.38 - Load versus strains of inner stirrups (ϵ_2) at mid-span – J2 to J4	167
Figure A.39 - Load versus strains of outer stirrups (ε ₃) at quad-span – J1 to J4	168
Figure A.40 - Load versus strains of inner stirrups (ε ₄) at quad-span – J2 to J4	168
Figure A.41 - Load versus mid-span vertical deflection - J1 to J4	169
Figure A.42 - Load versus quad-span vertical deflection - J1 to J4	169