

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DEPARMENT ELECTRONICS AND COMMUNICATIONS

Optically Controlled Microstrip Devices using Photonic Crystal Waveguides

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science In Electrical Engineering

Electronics and Communications Engineering

By

Heba Zakaria Elsayed Mohamed

Bachelor of Science in Electrical Engineering
Electronics and Communications Engineering
Faculty of Engineering, Thebes Academy, May 2011

Supervised By

Prof. Moataza A. Hindy

Prof. Adel El-Henhawey

Prof. Ismail Mohamed Hafez Ismail

Cairo - (2016)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

DEPARMENT ELECTRONICS AND COMMUNICATIONS

Optically Controlled Microstrip Devices using Photonic Crystal Waveguides

By

Heba Zakaria Elsayed Mohamed

Bachelor of Science in Electrical Engineering
Electronics and Communications Engineering
Faculty of Engineering, Thebes Academy, May 2011

Examiners' Committee

Name and Affiliation	Signature
Prof. Wagdi Refaat Anis	
, Ain Shams University Electronics and Communications	
Prof. Fatema Mahmoud Alhefnawi	
, Electronics Research Institute Electronics and Communications	
microwave Department and mandated to the National Authority for	
Remote Sensing & Space Sciences	
Prof. Moataza A. Hindy	
, Electronics Research Institute Electronics and Communications	
Microstrip Department	
Prof. Ismail Mohamed Hafez	
, Ain Shams University Electronics and Communications	

DATA.../..../....

STATEMENT

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Heba Zakaria Elsayed Mohamed

Signature

THESIS PUBLICATIONS

- [1] Heba Zakaria, Moataza Hindy, and Adel El-Henawi, "Optically Controlled Triple Notched UWB Antenna", Proceedings of Progress in Electromagnetics Research Symposium "PIERS", Prague, Czech Republic, July 6-9,P.P 858-860, 2015.
- [2] Heba Zakaria, Moataza Hindy, and Ismail Mohamed Hafez Ismail, "Optically Controlled Microstrip UWB Band-Pass Filter", New Paradigms In Electronics & Information Technology (PEIT'015), Luxor, Egypt,15-19 Nov. 2015.

Abstract

With the increased requirement for multi-standard/multifunction microwave systems during the last decade, extensive research has been carried out towards the development of optically controlled micro-strip devices such as filters, antennas, couplers...etc. For example, reconfigurability in antennas can be done to alter the radiation pattern, frequency and polarization to improve the overall system performance. The most common methodology adopted for reconfigurability of micro-strip designs are the inclusion of some forms of switching circuitry. Common tuning methods involve the use of varactors, PIN diodes, RF MEMs, ferroelectrics, liquid crystals and optical tuning. The PIN and varactor diodes have many disadvantages including high insertion loss, high power consumption and unacceptable distortion while RF MEMs offer low loss, high Q, less distortion but have very poor switching speeds. Ferroelectric materials also introduce high dielectric losses although they are readily tuned. Liquid crystals have high linearity, low tuning voltage but very small switching time. In contrast, optically controlled silicon switches offer high power handling capability, immunity to electromagnetic interference, very low distortion and costeffectiveness. In this work optically controlled antennas and filters have been demonstrated.

Conventional optical fibers have some disadvantages such as limited single mode wavelength, very small diameter (difficult to launch light through it), limited power capability, high bending losses and high confinement losses. In order to overcome these problems the conventional optical fibers are replaced by Photonic crystal fiber (PCF). Through the use of photoconductive switches which are controlled using laser diode and optical router. The

microstrip devices configuration and consequently the current density on the microstrip devices may be controlled in a desirable manner to achieve the desired performance.

In this thesis chapter one is an introduction and chapter two is an over view of microstrip devices (Antenna and Filters).

Chapter three is an introduction to optical control using Photonic crystal fiber (PCF). Chapter four provides optically controlled microstrip antenna using photonic crystal waveguides when this chapter adders a new optically controlled reconfigurable ultrawideband antenna (UWBA) with triple notched bands. The designed coplanar fed microstrip antenna can work at eight modes using optically controlled switches. This design proposes triple narrow notched bands at center frequencies 3.5GHz "WIMAX", 5.5GHz "WLAN" and 8.4 GHz.

Similarly optically controlled narrow band reconfigurable microstrip patch antenna using two optical switches is presented. The switch shifts the resonant frequency from 2GHz to 2.7GHz or 2.4GHz.

Chapter five provides optically controlled microstrip filter using photonic crystal waveguides. The work presents optically controlled microstrip filters using different optical power routers. Firstly, a controlled microstrip band pass filter using two optical switches is demonstrated. With the switches are in the ON state, the filter includes dual-mode (UWB) band pass. While in the OFF state, the filter includes triple-mode band pass filter.

Secondly, an optically controlled microstrip ultra-wideband band pass filter is presented.

Using optical switches we can obtain either double or triple notches. With all switches are in the ON State, the circuit behaves with dual notch at 4.28 and 6.42GHz while in state 2 the

notches are changed at 3GHz and 8.5GHz. But in state 3the filter response converts from a

dual notched band to triple notched UWB band pass in the same frequency range. The

proposed filter was simulated, manufactured, and tested.

Finally, this work offer a controlled microstrip low pass filter using a single optical switch to allow the filter application or the filter stopping.

The thesis also includes conclusions and future work, as well as a list of references.

Key words:

Reconfigurable antennas _ Band-notch _ Optical switches _ Photonic bandgap _optical control

TABLE OF CONTENT

AbstractIV.
Table of ContentVII.
Acknowledgement X.
List of FiguresXI.
List of TablesXV.
List of AbbreviationsXVI.
List of SymbolsXVIII
Chapter 1: Introduction
1.1. Introduction
1.2. UWB Technology1.
1.3. RF Switches
1.4.Optically controlled Microstrip Devices
-
Chapter 2:Over View on Microstrip Devices and Literature review
2.1. Introduction of Antenna6.
2.2. Microstrip Patch Antennas6.
2.2.1. Advantage and Disadvantages of Microstrip Antenna
2.2.2. Design Equations of Microstrip Patch Antenna7.
2.3. Literature review on Microstrip Antennas8.
2.3.1. UWB Microstrip Antenna
2.3.2. UWB Antennas with Notched bands
2.3.3. Microstrip Narrow band Antenna
2.4. Microstrip Filter
2.4.1. The Filter Design
2.4.2. Types of Microstrip Filters and Their Applications
Chapter 3: Optical Power Splitter Using Photonic crystal Substrate
3.1. Fiber Optical Couplers
3.2. Photonic Crystal Fiber
3.2.1. Photonic Bandgap Structures
3.3. Literature Review on Power Splitter Using Photonic Crystal Waveguides28.
Chapter 4: Optically Controlled Microstrip Antenna with Photonic crystal
Waveguides
<u>4.1.</u> Introduction

4.2. Optically Controlled Microstrip UWB Antenna with triple Notch	33.
4.2.1. Inserting Slots in the Design	34.
4.2.1. a. UWB Antenna with L-slot	35.
4.2.1. b. UWB Antenna with C-slot	36.
4.2.1. c. UWB Antenna with U-slot	37.
4.2.1. d. UWB Antenna with triple L, C, and U-slots	38.
4.2.2. Optically Controlled Switches	39.
4.2.2.1. Controlled UWB using one switch	39.
4.2.2.2. Controlled UWB using two switch	41.
4.2.2.3. Controlled UWB using three switch	44.
4.2.3. Complete System with Optical Router	45.
4.2.4. The Gain of the UWB Antenna	47.
4.2.5. Radiation Pattern of the UWB Antenna	49.
4.3. Optically Controlled Microstrip Patch Antennas	51.
Chapter 5: Optically Controlled Microstrip Filters with Photonic cryst Waveguides	tal
5.1. Optically Controlled Microstrip Band Pass Filter	62.
5.1.1. Dual mode UWB microstrip filter	62.
5.1.1.1 Filter Design and Results	64.
5.1.2. Dual notched bands UWB Microstrip Filter	66.
5.1.2.1. Filter Results	68.
5.2. Optically Controlled Microstrip Low Pass Filter	72.
5.2.1. Filter Results	74.
Conclusion	76.
References	79

ACKNOWLEDGMENT

All gratitude and thanks to God

I would like to express my sincere gratitude and appreciation to my supervisor's first

Professor Dr. Moataza Hindy for her useful supervision, sincere advice and guidance, but

also for her unlimited assistance, valued consultations, helpful comments and remarks while

reviewing Thesis. My special thanks and appreciation to her. Also my thanks to Professor Dr.

Adel Hanaway who passed away to God. Also I would like to thank Professor Dr. Ismail

Mohamed Hafez for his valued comments and encouragement.

Secondary, I would like to thank Eng. Anwar Sayed, In Microstrip Department, Electronic Research institutefor his effort in teaching me the tools of the Zealand Simulator, and I am very grateful to him for helping me in using this simulator.

Finally, I would like to present gratefulness and love to my mother for her love and my family and patience.

List of Figures

Fig 1-1 the UWB spectrums and narrow bands
Fig 1-2 Switch Configuration
Fig 1-3 (a) Equivalent circuit of the gap in the absence of laser, (b) Equivalent circuit of the
gap with laser
Fig 1-4 General Blok Diagram of Optically Controlled Microstrip Devices5
Fig 2-1 Graphical illustration of (a) Linearly, (b) Circularly and (c) elliptically polarized EM
waves6
Fig 2-2 the microstrip structure6
Fig 2-3(a), (b) Top and bottom view of the UWB antenna (c) comparison the return loss8
Fig 2-4 (a), (b) Top and bottom view of the Layout UWB antenna, top view and (c) the return
loss simulation and measurement9.
Fig 2-5 UWB with narrow notched bands
Fig 2-6 (a) Configuration of the proposed UWB antenna (b) Simulated VSWR of the
proposed antenna with and without C-shaped slots and CLLs slot11.
Fig 2-7 (a) UWB planar antenna (b) simulated and measured VSWR UWB antenna11
Fig 2-8(a) shows the antenna structure (b) show the simulated and measured return losses12
Fig 2-9 a) proposed fork shaped patch, b) Reconfigurable antenna with PIN diode at gaps, and
(c) the changed return Loss
Fig 2-10 Cross sectional of coupled lines
Fig 2-11 TEM modes of a coupled line
Fig 2-12 (a) lumped-element low pass filter. (b) Microstrip realization of the LPF15.
Fig 2-13 end-coupled microstrip BPF16
Fig 2-14 Parallel (Edge)-Coupled Microstrip BPF
Fig 2-15 (a), (b) Top and bottom view (c) results of measured and EM simulated18
Fig 2-16 (a) the layout of filter, (b) controlled filters, and (c) Simulated response frequency of
optimized filter19
Fig 2.17 (a) The layout of the proposed filter (b) Photograph of fabricated filter with optical switch(c) Simulated response of filter
Fig 3-1 Basic optical coupler

Fig 3-2 Optical splitter	20.
Fig 3-3 Optical combiners	21
Fig 3-4 three types of photonic crystals 1-D, 2-D and 3-D	21
Fig 3-5 PCFs with periodic air- holes in dielectric background & Dielectric cylinders in	
air	22.
Fig 3-6 TE and TM Band structure for PC	22.
Fig 3-7 Band gap of (a) 3D and (b) 2D	23.
Fig 3-8 the cross-section of PCF	24.
Fig 3- 9 Propagation diagram for a PCF with 45% air-filling fraction	25
Fig 3-10 Simple section of PCF cross-section	26.
Fig 3-11 Diagram showing behavior of glass core/air hole fiber	26
Fig 3-12 V -parameter for solid-core PCF (triangular lattice) plotted against the ratio of h	ole
spacing to vacuum wavelength for different values of d/Λ	28.
Fig 3-13(a) Schematic of 1x2 splitter (b) Normalized output power	28
Fig 3-14 (a) Schematic Y-junction (b) cascaded to the 1×16 splitter, (c), and (d) fabricat	ed
arc-shaped Y-junction with different radius	29.
Fig 3-15 Y splitter (a) a square PCF lattice; (b) a hexagonal PCF lattice	29
Fig 3-16 Transmission spectra for rectangular and hexagonal lattice for ports A, B	30.
Fig 3-17 (a) Sketch of coupled model (b) based on cavity of our triplexer PCF structure .	30.
Fig 3.18 Normalized output transmission	30.
Fig 3-19(a) Layout the 1×4 Y-shaped splitter, (b) transmission and reflection spectra	31.
Fig 3-20 a 3D view and b top view of router	31.
Fig 3-21 Simulated transmission characteristics and power density for the proposed route	r32
Fig 4-1 (a) Geometry of the designed CPW fed planar UWB antenna, (b) the current	
distribution on this antenna	34.
Fig 4-2 the return loss of Original UWB antenna	34.
Fig 4-3 (a) UWB antenna with L-shaped slot, (b) the current distribution on the antenna	35.
Fig 4-4 Comparison S ₁₁ for UWB band & UWB with a notch at 3.5GHz	35.
Fig 4-5 the UWB antenna with two L-shaped slot	36.
Fig 4-6 the S ₁₁ with two L slots	36.
Fig 4-7(a) UWB antenna with C-shaped slot, (b) the current distribution on this antenna.	36.

Fig 4-8 S ₁₁ for UWB band & UWB with notch at 5.5GHz	37.
Fig 4-9 (a) UWB antenna with U-shaped slot, (b) the current distribution on this antenna	a37.
Fig 4-10 S ₁₁ for UWB band & UWB with notch at 8.4GHz	38.
Fig 4-11(a) UWB antenna with 3notched, (b) current distribution on this designed anten	ına.38.
Fig 4-12 S ₁₁ for UWB band & UWB with triple notches	39.
Fig 4-13 UWB with controlled L slot	39.
Fig 4-14 UWB with controlled C slot.	40.
Fig 4-15 UWB with controlled U slot.	40
Fig 4-16 Simulated S ₁₁ with each slot activated individually	40.
Fig 4-17 UWB with controlled L & C slots.	41
Fig 4-18 UWB with controlled L & U slots	41
Fig 4-19 UWB with controlled C & U slot	42.
Fig 4-20 VSWR Comparison when the switches are either ON or OFF	42.
Fig 4-21 VSWR with optical switches are either ON or OFF	43.
Fig 4-22 VSWR with switches are either ON or OFF	43.
Fig 4-23 VSWR comparison of the 3 cases	43.
Fig 4-24 the geometry of the proposed ultra-wideband antenna (a) the original design (b))
UWB antenna without 3 switches.	44.
Fig 4-25 Compassion of the VSWR in two modes (OFF and ON)	44.
Fig 4-26 the system of optically controlled UWB antenna	45.
Fig 4-27 (a) NLC hole for the unbiased state, (b) NLC hole for the biased state	46.
Fig 4-28 comparison between original UWB & controlled UWB	46.
Fig 4-29 UWB Antenna gain when all switches are either ON or OFF	47.
Fig 4-30 Fabricated antenna.	48
Fig 4-31 Measured and simulated S_{11} for UWB antenna when all switches are OFF	48.
Fig 4-32 The VSWR of measured and simulated when all switches are OFF	
Fig 4-34the compact microstrip patch antenna	
Fig 4-35 the S ₁₁ of patch antenna	
Fig 4-36 the MPA design with optically controlled one switch	
Fig 4-37 the S ₁₁ of controlled MPA design.	

Fig 4-38 the MPA design with inserted optically controlled switches	53.
Fig 4-39 S ₁₁ of the MPA controlled using two switches	54
Fig 4-40 the inserted optically controlled MPA design	54.
Fig 4-41 (a) & (b) comparison of MPA control cases	55.
Fig 4-42 comparison of the S ₁₁ for MPA with all cases	55.
Fig 5-1 the structure of the UWB BPF filter	63
Fig 5-2 controlled BPF filter "inserting switches".	63
Fig 5-3 the S_{11} & S_{21} of the original BPF filter	64.
Fig 5-4 Simulated S ₁₁ and S ₂₁ with two switches are ON	64
Fig 5-5 optically controlled dual-mode microstrip filter	65.
Fig 5-6 Layout of designed UWB band pass filter	67.
Fig 5-7 optically controlled microstrip ultra-wideband Band pass filters	67
Fig 5-8 Simulated S21 & S11 of UWB band pass filter "state 1"	68.
Fig 5-9 Simulated S ₂₁ & S ₁₁ at state 2	68.
Fig 5-10 Simulated S ₂₁ & S ₁₁ at state 3.	69.
Fig 5-11 System of optical control microstrip UWB band pass filter	70.
Fig 5-12 the fabricated controlled UWB band pass filter	70.
Fig 5-13 measured S_{11} and S_{21} for 3^{rd} state	71.
Fig 5-14 comparison between simulated and measurement parameters	71.
Fig 5-15 Compare between S ₂₁ simulated at 3 cases	72.
Fig 5-16 original microstrip LPF	73.
Fig 5-17 Simulated S ₁₁ and S ₂₁ of original microstrip LPF	73.
Fig 5-18the modified LPF filter	74.
Fig 5-19 the LPF filter with optical switch	74.
Fig 5-20 Simulated S ₁₁ and S ₂₁ of LPF "state 1"	75.
Fig 5-21 controlled S ₁₁ and S ₂₁ of LPF "state 2"	75.
Fig 5-22 comparison between LPF original microstrip and modified	75.
Fig Simple block diagram of RF basic transceiver in a communication system	77.

List of Tables

Table (1-1) Summary of RF Switches	3.
Table (4-1) parameters of the FR4 Substrate	34.
Table (4-2) the eight modes using three switches	47.
Table (4-3) Monopole Antenna	56.
Table (4-4) Wideband Antenna	57.
Table (4-5) Slot Antenna	58.
Table (4-6) Half Annular Antenna	59.
Table (4-7) Dual-Band Antenna	60.
Table (4-8) Reconfigurable Antenna.	61.
Table (5-1) the parameter of BPF	63.
Table (5-2) the cases of optically control UWB BPF using two switches	65.
Table (5-3) the dimensions of designed UWB BPF	66.
Table (5-4) the three modes using three switches	69.
Table (5-5) the dimensions of LPF was changed	74.