

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

THE ROLE OF PROPHYLACTIC METHYLENE BLUE IN MANAGEMENT OF POST CARDIOPULMONARY BYPASS VASOPLEGIA IN HIGH RISK PATIENTS

Thesis

Submitted for partial fulfillment Of the M.D. Degree in Anesthesiology

By AHMED SALAH EL DIN OMRAN

M.B.B. Ch, M.Sc. Anesthesiology

Under supervision of **Prof. Dr. Samia Ibrahim Sharaf**

Professor of Anesthesiology and Intensive care Faculty of Medicine Ain Shams University

Dr. Hala Ezzat Ali Eid

Assissant Professor of Anesthesiology and Intensive care Faculty of Medicine Ain Shams University

Dr. Adel Mohamed Alansary

Assissant Professor of Anesthesiology and Intensive care Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2010

CONTENTS

INTRODUCTION & AIM OF THE WORK
REVIEW OF LITERATURE
THE SYSTEMIC INFLAMMATORY RESPONSE
DURING CBP
Vasoplegic syndrome and new
Methods of treatment
PATIENTS AND METHODS
RESULTS
DISCUSSION
SUMMARY AND CONCLUSION
REFERENCES
ARARIC SUMMARY

LIST OF TABLES

Table	Title	Page
No.		No.
1	Demographic analysis and preoperative	
	medical conditions	
2	Mean arterial pressure variables	
3	Mean Pulmonary artery pressure	
4	Pulmonary vascular resistance	
5	Systemic vascular resistance	
6	Central venous pressure	
7	Cardiac output variables	
8	The laboratory variables	
9	comparison between the study group and the	
	control group regarding the volumeof fluid	
	infused, fresh frozen plasma, packed RBCs,	
	urine output, aortic crossclamp period or total	
	CPB time	
10	The need for inotropes, hospital stay, and	
	ICU length of stay	

LIST OF FIGURES

Fig.	Title	Page
No.		No.
1	Mechanism of arrest and transmigration of	
	neutrophils into the interstitial space	
2	Steps in activation of the classical and	
	alternative complement pathways and	
	formation of the membrane attack complex,	
	C5b-9.	
3	Schematic of the inflammatory process	
	induced by CPB	
4	Pathways leading to activation of NF-KB and	
	the production of adhesion molecules	

LIST OF GRAPHS

Fig.	Title	Page
No.		No.
1	Showing increase in the MAP more in the	
	study group than the control group	
2	Showing an increase in the pulmonary	
	vascular resistance value at the study group	
	more than the control.	
3	Showing an increase in the systemic vascular	
	resistance value at the study group more than	
	the control.	ı
4	Showing an increase in the central venous	
	pressure value at the study group more than	
	the control.	1
5	Showing an increase in the cariac output value	
	at the study group more than the control	
6	Showing the heart rates of both groups with	
	no significant difference between the two	
_	groups	ı
7	Showing the marked difference between the	
	study group and the control group in their	
	need for adrenaline being higher in the control	
_	group.	
8	Showing the difference between the two	
	groups regarding their need for noradrenaline	

ABBREVIATIONS

(ACLS) Adult cardiopulmonary life support

(ADH) Antidiuretic hormone

(AVP) Arginine vasopressin

(cno) Constitutive nitric oxide

(CPB) Cardiopulmonary bypass

(EC) Endothelial cell

(ECP) Extracorporeal circulation

(ENA) Endothelial cell neutrophil attractant

(GMP) Cyclic guanisine monophosphate

(ICAM) intracellular adhesion molecule

(IFN) Interferon

(INOS) Inducible nitric oxide synthesases

(LVAD) Left sided assisted device

(NAP) Neutrophilc activating protein

(NF-KB) Nuclear factor KB

(NO) Nitric oxide

(OHS) open heart surgery

(PAF) Platlet activating factor

(**PSGL-1**) P-selectin glycoprotein-1

(TNF) Tumour necrosis factor

(VCAM) vascular adhesion molecule

(vs) vasoplegic syndrome

INTRODUCTION

The English surgeon John Hunter first recognized the malignant systemic spread of inflammation as an abnormal response to injury two centuries ago . The early pioneers in cardiac surgery recognized a similar pattern of systemic injury they encountered after cardiopulmonarybypass (CPS). Kirklin hypothesized that the deleterious effects of CPB were secondary to the exposure of blood to abnormal surfaces in the bypass circuit, which initiated a "whole body inflammatory response." He noted that this response is characterized by activation of coagulation, the kallikrein system, fibrinolysis, and complement, all of which are now recognized as the mediators of the disseminated intravascular post-pump syndrome(kirklin et al, 1991)

Many of the components currently used to perform cardiovascular operations lead to systemic insuIts that result bypass cardiopulmonary from circuit-induced contact activation, circulatory shock, and resuscitation, and syndrome similar to endotoxemia. Experimental observations have demonstrated that these events have profound effects on activating endothelial cells to recruit neutrophils from the circulation. Once adherent to the endothelium, neutrophils release cytotoxic proteases and oxygen-derived free radicals, which are responsible for much of the end-organ damage seen after cardiovascular operations. Recently the cellular and molecular mechanisms of endothelial cell activation have become increasingly understood. It is conceivable that once the molecular mechanisms of endothelial cell activation are better defined, therapies will be developed allowing the selective or collective inhibition of vascular endothelial activation during; the perioperative period. (*Edward et al*,1997)

Within the body the endothelial cell, the only surface in contact with circulating blood, simultaneously maintains the fluidity of blood and the integrity of the vascular system. This remarkable cell maintains a dynamic equilibrium by producing anticoagulants to maintain blood in a fluid state and by generating procoagulant substances to enhance gel formation when perturbed. Coagulation proteins circulate as inert zymogens, which convert to active enzymes when stimulated. Likewise, blood cells remain quiescent until activated to express surface receptors and release proteins and enzymes involved in the coagulation equilibrium. The continuous exposure of heparinized blood to the perfusion circuit and to nonendothelial cell tissues of the wound during clinical cardiac surgery produces an intense thrombotic stimulus that involves both the tissue factor pathway (extrinsic coagulation pathway) in the wound and the contact and intrinsic coagulation pathways in the perfusion circuit. Heparin does not block thrombin formation; during extracorporeal perfusion (ECP) heparin partially inhibits thrombin after it is produced. Thrombin is continuously generated and circulated despite massive doses of heparin in all applications of extracorporeal perfusion, (Spanier et al 1996)

AIM OF THE WORK

The aim of the study is to detect the effect of prophylactic administration of methylene blue in high group for vasoplegic syndrome and its effect on morbidity, mortality, Intensive care and vasopressor requirement.

SYSTEMIC INFLAMATORY RESPONSE

(1) Endothelial cells

Endothelial cells are activated during CPB and, open heart surgery (OHS) by a variety of agonists, The principal agonists for endothelial cell activation during CPB are thrombin, C5a, and the cytokines IL-1B and TNF. Other agonists, such as endotoxin, histamine are less important during CPB, and endothelial cells are largely unresponsive to chemokines. (*Francis et al2001*).

IL-1B and TNF induce the early expression of P-selectin and the later synthesis and expression of E-selectin, which are involved in the initial stages of neutrophil and monocyte adhesion. The two cytokines also induce expression of molecule(ICAM-1) intracellular adhesion and vascular adhesion rnolecule (VCAM1), which firmly bind neutrophils endothelium and initiate leukocyte and monocytes to the trafficking to the extravascular space (Fig. 1). Experimentally ICAM-1 is upregulated during CPB in pulmonary vessels' and there is evidence that P- and E-selectins are upregulated during CPB and in myocardial ischemia-reperfusion sequences. IL-1B TNF-, induce endothelial cell and production chemotactic proteins IL-8 and MCP-1, and induce production of prostacyclin by the cyclooxygenase pathway and nitric oxide(NO) by NO synthase. These two vasodilators reduce shear stress and increase vascular permeability and therefore enhance leukocyte adhesion and transmigration. Lastly, IL-1βand TNF, stimulate endothelial cell production of proinflammatory cytokines, IL-1, IL-6, IL-8, and platlet