

Ain Shams University Faculty of Engineering Computer and Systems Engineering Department

Reconfigurable Media Processor for Augmented Reality Applications

A Thesis

Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

Submitted by

Hanaa Mohamed Abdel Gawad Mohamed Mostafa

B.Sc. of Electrical Engineering, 2009 Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Supervised By

Prof. Dr. Ayman Mohamed Mohamed Hassan Wahba

Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Dr. Mona Safar

Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Cairo, 2015

Ain Shams University Faculty of Engineering Cairo, Egypt

Examiners Committee

Name: Hanaa Mohamed Abdelgawad Mohamed Mostafa
Thesis: Reconfigurable Media Processor for Augmented Reality Applications

Degree:

Master of Science in Electrical Engineering (Computer and Systems)

	Title, Name, and Affiliation	Signature
1.	Prof. Dr. Hassen Taher Dorrah Department of Electrical Engineering, Faculty of Engineering, Cairo University, Cairo.	
2.	Prof. Dr. Mohamed Watheq El Kharashi Computer and Systems Engineering Dept. Faculty of Engineering, Ain Shams University, Cairo.	
3.	Prof. Dr. Ayman Mohamed Wahba Vice Dean for Student Affairs and Education, Computer and Systems Engineering Dept. Faculty of Engineering, Ain Shams University, Cairo. (Supervisor)	

Date: 21 / 3 / 2015

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Computer and Systems Engineering).

The work included in this thesis was carried out by the

author at the Computer and Systems Engineering Department,

Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name: Hanaa Mohamed Abdel Gawad Mohamed Mostafa

Signature:

Date:

Curriculum Vitae

Name of Researcher Hanaa Mohamed Abdelgawad Mohamed

Date of Birth 2/1/1987

Place of Birth Cairo, Egypt

First University Degree M.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree April 2015

ABSTRACT

Hanaa Mohamed Abdel Gawad Mohamed Mostafa, Reconfigurable Media Processor for Augmented Reality Applications,

Master of Science dissertation,

Computer and Systems Department, Faculty of Engineering,

Ain Shams University, 2015.

Real time processing of image and video applications, especially Augmented Reality (AR) systems is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. Augmented Reality (AR) is divided into vision processing engine and graphics processing engine. Those two processing engines use highly computational intensive tasks such as image segmentation, object recognition, and feature tracking. The processing of those functions requires high computational power, especially when they are applied on high-definition (HD) input video frames. The processing of video and image algorithms of real time AR is not capable of running on devices efficiently with low computing power at a reasonable frame rate. The collaboration of the CPU and hardware accelerators provides an efficient solution for this problem.

In this thesis, the presented approach targets offloading highly computational pixel processing modules from *processing system (PS)* to *programmable logic (PL)* taking the advantage of *High Level Synthesis (HLS)* tool flow to accelerate the implementation of compute-intensive pixel processing tasks of AR. Hardware accelerators for AR processing tasks are proposed. The accelerators are applied on full HD video input stream at 1080p60 of HDMI input. The performance improvement through hardware acceleration decreases the CPU utilization and increases the frame rate.

Keywords: Augmented Reality (AR), Computer Vision (CV), High Level Synthesis (HLS), ZYNQ, Field Programmable Gate Arrays (FPGAs).

SUMMARY

This thesis demonstrates the advantage of implementing the computational intensive tasks of AR video and image processing tasks as hardware accelerators using HLS.

The thesis is in seven chapters organized as follows:

Chapter One begins with an overview of the real time challenge of the AR systems, the motivation behind this dissertation, the scope and objectives of our work, and the outline of chapters.

Chapter Two, A brief introduction to AR is presented. It demonstrates AR different types, AR architecture, and the related work. The advantage of markerless-based AR over marker-based AR is discussed.

Chapter Three, Embedded AR is illustrated with a survey on the previous work and its architecture. A comparison between different embedded approaches for AR is presented. In addition, a brief introduction to HLS with its constraints, optimization techniques on FPGA and advantage compared to HDL is given.

Chapter Four, the infrastructure of *ZYNQ* platform, its architecture, capabilities and restrictions for the implementation of AR architecture is presented. A quick overview about the used *target reference design* (*TRD*), and the Linux operating system for the application (*PetaLinux*) are given.

Chapter Five is divided in two sections. First, the software and the hardware implementation of canny edge detection are presented. In the other section, the software and hardware implementation of feature detection and extraction for markerless AR are presented. We use *OpenCV* libraries and *HLS* video libraries.

Chapter Six, the evaluation and experimental results of the implemented hardware accelerators are presented. This chapter is divided into three sections. First the results of those hardware accelerators using Vivado *HLS* simulation are illustrated. Second, the optimization directive results are presented to show the impact of optimization directives on area and performance. Finally, the profiling results of the hardware accelerators on ZYNQ platform are presented.

Finally, the thesis ends by extracting conclusions and future work that will be done based on this work.

ACKNOWLEDGEMENT

الحمد لله رب العالمين

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah for giving me strength and ability to complete this thesis.

I express my profound sense of gratitude to my supervisors Prof. Dr. Ayman Wahba and Dr. Mona Safar for their guidance, understanding and invaluable advices throughout the duration of this study and the preparation of this thesis.

I would like to thank my mother for her encouragement, care, and love. I would like to thank my family for support and encouragement. Many thanks go to my colleagues and friends for their support and help during my thesis.

Contents

LIST (OF FIGURES	1
LIST (OF ACRYNOMS	II
LIST (OF TABLES	III
CHAP'	TER 1 INTRODUCTION	1
1.1	SCOPE AND OBJECTIVES	2
1.2	RESEARCH CONTRIBUTIONS	3
1.	2.1 Augmented Reality and its challenges	3
1.	2.2 Hardware accelerators using HLS	3
1.	2.3 Profiling the hardware accelerators on ZYNQ Platform	n 4
1.3	OUTLINE	5
CHAP'	TER 2 AUGMENTED REALITY	6
2.1	AUGMENTED REALITY VERSUS VIRTUAL REALITY	6
2.2	AR Applications	8
2.3	AR Types	10
2.	.3.1 Marker-Based AR	10
2.	.3.2 Markerless-based AR	11
2.4	AR PIPELINE	13
2.	.4.1 Marker-based AR pipeline	21
2.	4.2 Feature-based AR Pipeline	22
2.5	MARKERLESS-BASED AR VERSUS MARKER-BASED AR	24
2.6	AR CHALLENGES	25
2.7	SUMMARY	27

CHAPTER	R 3 FPGA-BASED EMBEDDED AR	28
3.1 EN	MBEDDED AR SOLUTION	28
3.2 RE	ELATED WORK	30
3.2.1	Embedded AR system design platforms	30
3.2.2	Mobile AR	34
3.2.3	FPGA-based Embedded AR	37
3.3 H	ARDWARE TOOLS	43
3.3.1	Hardware description languages	43
3.3.2	High Level Synthesis	46
3.4 HI	LS CONSTRAINTS AND OPTIMIZATIONS	49
3.4.1	Constraints	50
3.4.2	Loop Optimization Directives	51
3.5 HI	LS Video Libraries	55
3.5.1	AXI Interfaces	55
3.5.2	Pre-built Embedded OpenCV Libraries	56
3.6 HI	LS Memory Architectures	57
3.6.1	Shift Register	59
3.6.2	Memory Windows	61
3.6.3	Line Buffer	63
3.7 Su	JMMARY	65

CHAP	TER 4 IMPLEMENTATION INFRASTRUCTURE	ON
ZYNQ PL	ATFORM	66
4.1	ZYNQ-7000 Architecture	67
4.	.1.1 Hardware specifications	67
4.	.1.2 AXI Communication Channel	69
4.	.1.3 Embedded Operating System	74
4.2	DIFFERENT VISION PROCESSING METHODS ON ZYNQ	75
4.3	ARCHITECTURES FOR VIDEO PROCESSING	78
4.	.3.1 Direct streaming architecture	78
4.	3.2 Frame-buffer streaming architecture	78
4.4	TARGET REFERENCE DESIGN (TRD)	80
4.5	Summary	81
CHAP	TER 5 HIGH LEVEL SYNTHESIS OF AR HARDWA	RE
ACCELE	RATORS	82
5.1	INPUT VIDEO INITIALIZATION	83
5.	.1.1 Grayscale conversion (RGB2YUV)	83
5.	.1.2 Down-sampling and Up-sampling	84
5.	.1.3 Memory structures	84
5.2	IMPLEMENTATION FLOW	87
5.3	SOFTWARE/HARDWARE IMPLEMENTATION	88
5.	3.1 Canny edge detection	89
5.	.3.2 Feature detection and extraction for markerless AR	97
5.4	SUMMARY	100