Cairo University
Faculty of Veterinary Medicine
Department of Pharmacology

Potential Pharmacological and Phytochemical Properties of Different Fractions of *Moringa Oleifera* Methanol Extract

Thesis presented

By

Abduljalil Hamood Ahmed Almaweri

(B.V.Sc. Al-Baath University, 2010)

For

The Degree of M.V.Sc (Veterinary Pharmacology)

Under Supervision of

Prof. Dr. Attia Hassan Atta

Professor of Pharmacology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Mostafa Abbas Shalaby

Professor of Pharmacology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Soad Mohamed Nasr

Professor of Clinical Pathology Veterinary Research Division National Research Centre

2017

Cairo University Faculty of Veterinary Medicine Department of Pharmacology

Supervision Sheet

Supervisors

Prof. Dr. Attia Hassan Atta

Professor of Pharmacology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Mostafa Abbas Shalaby

Professor of Pharmacology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Soad Mohamed Nasr

Professor of Clinical Pathology Veterinary Research Division National Research Centre

2017

Cairo University

Faculty of Veterinary Medicine

Department of Pharmacology

Name: Abduljalil Hamood Ahmed Almaweri

Nationality: Yemeni

Date of birth: 1 / 1 / 1983

Place of birth: AL-Baidha (Mawer-Rada' a) Yemen

Degree: Master

Specialization: Veterinary Pharmacology

Title of thesis: "Potential Pharmacological and Phytochemical Properties of

Different Fractions of Moringa oleifera Methanol extract"

Supervisors: Prof. Dr. Attia Hassan Atta

Prof. Dr. Mostafa Abbas Shalaby **Prof. Dr.** Soad Mohamed Nasr

ABSTRACT:

The present work was carried out to detect the phytochemical properties of Moringa oleifera leaves methanol extract MOLME and its fractions by using preliminary phytochemical and GC-Mass analysis and detect the pharmacological properties as antidiarrheal, antibacterial, antioxidant and hepatoprotective. The MOLME was subjected to fractionation by using five types of solvents with different polarization; n-hexane, dichloromethane, ethyl acetate, n-butanol and water. The phytochemical results showed that MOLME contains many chemical compounds with different concentration and different effects all thus compound were distributed after fractionation and concentrated in different fractions. Pharmacology studies showed significant antidiarrheal effect in MOLME this effect was concentrated in tow fractions n-hexane and dichloromethane. The result also showed that confined antibacterial effect for MOLME concentrated in nbutanol fraction with moderate effect in aqueous fraction. MOLME showed moderate antioxidant activity in vitro against DPPH and high activity for n-butanol and ethyl acetate fraction. In vivo MOLME and n-hexane, dichloromethane and aqueous showed significant effect in several parameters protein profile, liver function and antioxidant biomarker.

Key words: *Moringa oleifera*; Phytochemical; Antidiarrheal; Antibacterial; Antioxidant; Hepatoprotective.

ACKNOWLEDGEMENT

I am greatly indebted to gracious **ALLAH**, to helping me to carry out this scientific work.

It is a great pleasure to express my deepest thanks and gratitude to **Prof. Dr. Attia Hassan Atta,** professor of Pharmacology, Faculty of Veterinary Medicine,

Cairo University for suggesting the topic of this thesis and his kind supervision.

My thanks and sincere appreciation to **Prof. Dr. Mostafa Abbas Shalaby**, professor of Pharmacology, Faculty of Veterinary Medicine, Cairo University for his encouragement, creative and comprehensive advice until this work came to existence.

I wish to especially express my gratitude to **Prof. Dr. Soad Mohamed Nasr**, professor of Clinical Pathology, National Research Centre for her close supervision throughout the study, valuable guidance, and kindly offering her experience and time to me for completion of this thesis.

My sincere appreciation to **Prof. Dr. Hassan Mohamed Desouky** professor of Pathology, Department of Animal Reproduction, NRC for help in histopathological study.

My deepest thanks to all stuff members of Department of Pharmacology and technicians, Faculty of Veterinary Medicine, Cairo University and members of Parasitology and Animal Diseases Department in NRC **Dr. Amany Mohamed Mohamed**, **Dr. Doaa sedky Mohamed** and **Dr.Somia Ayesh Nassae** for their continuous support.

Iam greatly indicated to the **Egyptian society of** *Moringa*, NRC for supplying *Moringa* plant and for great help in biochemical analysis.

Dedication: to the **Spirit of My Mother**, My Family with special to My Father, Wife, Brothers and Sisters for their continuous encouragement.

LIST OF CONTENTS No. **Subject Page ACKNOWLEDGMENT** LIST OF FIGUERS LIST OF TABLES LIST OFABBREVIATIONS **INTRODUTION** 1 **REVIEW OF LITERATURE** II 4 Phytochemical constituent review 6 **Antidiarrheal review** 10 **Antibacterial review 13** Antioxidant and hepatoprotective review 20 Other pharmacology review 26 MATERIALS AND METHODS Ш **37** Materials 38 Methods..... 43 I. Phytochemical studies 45 Preliminary phytochemical tests..... 45 GC-Mass analysis 49 II. Determination of acute lethal dose 50 (LD50) **50** III. Pharmacological studies 51 51 1. Antidiarrheal activity 1.1. Castor oil induced diarrhea..... 51 1.2. Charcoal meal test 52 1.3. Isolated rabbit duodenum 54 **56** 2. Antibacterial activity 2.1. Well diffusion method 57 2.2. Minimum inhibitory concentration..... 58 3. Antioxidant activity 61 3.1. In vitro antioxidant..... 61 3.2. In vivo antioxidant..... **62** IV **RESULTS 74 75** I. Phytochemical studies 1. Preliminary phytochemical tests..... **75** 2. GC-Mass analysis **76**

88

II. Determination of acute lethal dose 50 (LD50)

	III. Pharmacological studies	89
	1. Antidiarrheal activity	89
	1.1. Castor oil induced diarrhea	89
	1.2. Charcoal meal test	95
	1.3. Isolated rabbit duodenum	101
	2. Antibacterial activity	104
	2.1. Well diffusion method	104
	2.2. Minimum inhibitory concentration	111
	3. Antioxidant activity	118
	3.1. In vitro antioxidant	118
	3.2. In vivo antioxidant	120
V	DISCUSSION	157
	1. Phytochemical	158
	2. Acute toxicity	158
	3. Antidiarrheal	159
	4. Antibacterial.	163
		166
	5. Antioxidant and hepatoprotective	
VII	REFERENCES	171
VI	ENGLISH SUMMARY	
	ARABIC SUMMARY	
	ARABIC ABSTRACT	

LIST OF TABLES		
NO.	Title	Page
Table 1	The active constituent of <i>Moringa oleifera</i> methanol extract	75
Table 2	Phyto-components identified in <i>Moringa oleifera</i> leaves methanol extract.	77
Table 3	Phyto-components identified in <i>Moringa oleifera</i> leaves n-hexane fraction.	79
Table 4	Phyto-components identified in <i>Moringa oleifera</i> leaves dichloromethane fraction.	81
Table 5	Phyto-components identified in <i>Moringa oleifera</i> leaves Ethyl acetate fraction.	83
Table 6	Phyto-components identified in <i>Moringa oleifera</i> leaves n-butanol fraction – infected chicks.	85
Table 7	Phyto-components identified in <i>Moringa oleifera</i> leaves aqueous fraction	87
Table 8	Calculation of LD_{50} of <i>Moringa oleifera</i> leaves methanol extract.	88
Table 9	Effect of <i>Moringa oleifera</i> leaves methanol extract on the number of fecal pellets in castor oil induced diarrhea in rats.	90
Table 10	Effect of different fractions of methanol extract of <i>Moringa</i> oleifera leaves on the number of fecal pellets in castor oil induced diarrhea in rats.	93
Table 11	Effect of <i>Moringa oleifera</i> leaves methanol extract (MOLME) on distance travelled of intestine in mice.	96
Table 12	Effect of different fractions of <i>Moringa oleifera</i> leaves on distance travelled of intestine in mice.	99
Table 13	Effect of <i>Moringa oleifera</i> leaves methanol extract against Gram positive and Gram negative bacteria inhibition zone.	105
Table 14	Effect of different fractions of methanol extract of <i>Moringa</i> oleifera leaves against Gram positive and Gram negative	109

	bacteria.	
Table 15	Effect of <i>Moringa oleifera</i> leaves methanol extract against Gram positive and Gram negative bacteria growth.	111
Table 16	Effect of n-hexane fraction of methanol extract of Moringa	112
	Oleifera leaves against Gram positive and Gram negative	
	bacteria growth.	
Table 17	Effect of dichloromethane fraction of methanol extract of	113
	Moringa oleifera leaves against Gram positive and Gram	
	negative bacteria growth.	
Table 18	Effect of ethyl acetate fraction of methanol extract of <i>Moringa</i> oleifera leaves against Gram positive and Gram negative bacteria growth.	114
Table 19	Effect of aqueous fraction of methanol extract of <i>Moringa</i> oleifera leaves against Gram positive and Gram negative bacteria growth.	115
Table 20	Effect of n-butanol fraction of methanol extract of <i>Moringa oleifera</i> leaves against Gram positive and Gram negative bacteria growth.	116
Table 21	Antioxidant activity of <i>Moringa oleifera</i> leveas methanol extract against DPPH.	118
Table 22	Body weight gain (g) in different groups of rats treated with carbon tetrachloride - induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions during the experimental period.	121
Table 23	Effect of methanol extracts of <i>Moringa oleifera</i> and its fractions on erythrogram of rats treated with carbon tetrachloride - induced hepatotoxicity	124
Table 24	Effect of methanol extracts of <i>Moringa oleifera</i> and its fractions on leukogram and platelets of rats treated with carbon tetrachloride - induced hepatotoxicity	130
Table 25	Effect of methanol extracts of <i>Moringa oleifera</i> and its fractions on serum proteins profile of rats treated with carbon tetrachloride - induced hepatotoxicity	135
Table 26	Effect of Moringa oleifera methanol extracts and its fractions	139

	on enzymes activity, total cholesterol and triglycerides in serum of rats treated with carbon tetrachloride - induced hepatotoxicity	
Table 27	Effect of methanol extracts of <i>Moringa oleifera</i> and its fractions on Reduced glutathione level and antioxidant enzymes activities in ileum homogenates of in liver homogenate of rats treated with carbon tetrachloride - induced hepatotoxicity (Means \pm SE, n=5)	144

LIST OF FIGURES			
NO.	Title	Page	
Figure 1	Fractionation of the methanol extract by different solvents.		
Figure 2	GC- Mass peaks of <i>Moringa oleifera</i> methanol extract.		
Figure 3	GC- Mass peaks of <i>Moringa oleifera</i> leaves n-hexane fraction.		
Figure 4	GC- Mass peaks of <i>Moringa oleifera</i> leaves dichloromethane fraction.	80	
Figure 5		82	
Figure 5	GC- Mass peaks of <i>Moringa oleifera</i> leaves Ethyl acetate fraction.	04	
Figure 6	GC-Mass peaks of <i>Moringa oleifera</i> leaves n-butanol fraction.	84	
Figure 7	GC- Mass peaks of <i>Moringa oleifera</i> leaves aqueous fraction.	86	
Figure 8	Effect of methanol extract of <i>Moringa oleifera</i> on castor oil	91	
	induced diarrhea in rats.		
Figure 9	Effect of different fractions of Moringa oleifera on castor oil	94	
T! 10	induced diarrhea in rats.	0=	
Figure 10	Effect of methanol extract of <i>Moringa oleifera</i> leaves on	97	
Elauma 11	intestinal transit time of charcoal meal.	100	
Figure 11 Effect of methanol extract of <i>Moringa oleifera</i> leaves on intestinal transit time of charcoal meal.			
Figure 12			
Figure 13	Determination of the site of action of <i>Moringa oleifera</i> lea methanol extract.	103	
Figure 14	Effect of <i>Moringa oleifera</i> methanol extract on Gram positive	106	
	and Gram negative bacteria.	100	
Figure 15 Effect of different fractions of <i>Moringa oleifera</i> leaves methanol extract on inhibition zone against Gram positive and Gram		108	
rigule 13	negative bacteria.		
Figure 16	Effect of different fractions of methanol extract of Moringa	110	
	oleifera on Gram positive and Gram negative bacteria.		
Figure 17			
71 10	and Gram negative bacteria.		
Figure 18	Body weight gain (g) in different groups of rats treated with	119	
	carbon tetrachloride - induced hepatotoxicity then treated with		
	methanol extracts of <i>Moringa oleifera</i> and its fractions during the experimental period.		
Figure 19	Red blood cells(RBCs)count and hemoglobin (Hb) in different	122	
Figure 19	experimental groups of rats treated with carbon tetrachloride -	144	
	induced hepatotoxicity then treated with methanol extracts of		

	Moringa oleifera and its fractions and silymarin (as a standard drug).	
Figure 20	Hematocrit (Hct) and Mean corpuscular hemoglobin concentration in different groups of rats treated with carbon tetrachloride - induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions during the experimental period.	125
Figure 21	Mean corpuscular hemoglobin concentration and hematocrit (Hct) in different groups of rats treated with carbon tetrachloride - induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions during the experimental period.	126
Figure 22	Mean corpuscular hemoglobin (MCH) and Mean corpuscular hemoglobin concentration (MCHC)in different experimental groups of rats treated with carbon tetrachloride -induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a standard drug).	127
Figure 23	Mean corpuscular volume (MCV) and Red blood cell distribution width (RDW)in different experimental groups of rats treated with carbon tetrachloride -induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a standard drug).	128
Figure 24	Total leukocytes count(TLC) and lymphocytes in different experimental groups of rats treated with carbon tetrachloride - induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a standard drug)	131
Figure 25	Monocytes count and granulocytes in different experimental groups of rats treated with carbon tetrachloride -induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a standard drug).	132
Figure 26	Total platelets count and mean platelet volume in different experimental groups of rats treated with carbon tetrachloride - induced hepatotoxicity then treated with methanol extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a standard drug).	133
Figure 27	Serum total proteins and albumin in different experimental groups of rats treated with carbon tetrachloride -induced hepatotoxicity then treated with methanol extracts of <i>Moringa</i>	136

	oleifera and its fractions and silymarin (as a standard drug).		
Figure 28			
riguit 20	experimental groups of rats treated with carbon tetrachloride -	137	
	induced hepatotoxicity then treated with methanol extracts of		
	Moringa oleifera and its fractions and silymarin (as a standard		
	drug).		
Figure 29	Serum liver enzymes in different experimental groups of rats	140	
Figure 29	treated with carbon tetrachloride -induced hepatotoxicity then		
	treated with methanol extracts of <i>Moringa oleifera</i> and its		
Figure 20	fractions and silymarin (as a standard drug).	1./1	
Figure 30	Lipid peroxide (Malondialdehyde) in the liver homogenate of	141	
	different experimental groups of rats treated with carbon		
	tetrachloride -induced hepatotoxicity then treated with methanol		
	extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a		
E' 21	standard drug).	1.40	
Figure 31	Serum glucose in different experimental groups of rats treated	142	
	with carbon tetrachloride -induced hepatotoxicity then treated		
	with methanol extracts of <i>Moringa oleifera</i> and its fractions and		
	silymarin (as a standard drug).		
Figure 32	Glutathione reduced level and the activities of glutathione—s-	145	
	transferase and catalase activities in the liver homogenate of		
	different experimental groups of rats treated with carbon		
	tetrachloride -induced hepatotoxicity then treated with methanol		
	extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a		
F: 22	standard drug).	146	
Figure 33	Lipid peroxide (Malondialdehyde) in the liver homogenate of	146	
	different experimental groups of rats treated with carbon		
	tetrachloride -induced hepatotoxicity then treated with methanol		
	extracts of <i>Moringa oleifera</i> and its fractions and silymarin (as a		
E: 24	standard drug).	150	
Figure 34	Liver section of rats of negative control group	150	
Figure 35	Liver section of rats treated with methanol extract of <i>Moringa</i> oleifera	150	
Figure 36	Liver section of rat intoxicated with carbon tetra chloride (CCl ₄)	151	
Figure 37	Liver section of CCl ₄ intoxicated rats treated along with	151	
	methanol extract of <i>Moringa oleifera</i> (400 mg/kg BW)		
Figure 38	Liver section of CCl ₄ intoxicated rats treated along with n-	152	
	hexane fraction of Moringa oleifera (100 mg/kg BW)		
Figure 39	Liver section of CCl ₄ intoxicated rats treated along with	153	
	administration dichloromethane fraction of Moringa oleifera		
	(100mg/kg BW)		

Figure 40	Liver section of CCl ₄ intoxicated rats treated along with administration ethyl acetate fraction of <i>Moringa oleifera</i> (100mg/kg BW)	153
Figure 41	Liver section of CCl ₄ intoxicated rats treated along with administration n-butanol fraction of <i>Moringa oleifera</i> (100 mg/kg BW)	154
Figure 42	Liver section of CCl ₄ intoxicated rats treated along with administration aqueous extract of <i>Moringa oleifera</i> (100 mg/kg BW)	155
Figure 43	Liver section of CCl ₄ intoxicated rats treated along with administration silymarin (100 mg/kg BW)	156

List of abbreviation		
Abbreviation	Meaning	
ALP	Alkaline phosphatase	
ALT	Alanine aminotransferase	
ATCC	American type culture collection	
ANOVA	Analysis of variation	
AST	Aspartate aminotransferase	
BGL	Blood glucose level	
CAT	Catalase	
CCL ₄	Carbon tetra chloride	
CFU	Colony forming unit	
DIC	Diclofenac	
DPPH	2, 2-diphenyl-2-picryl hydrazyl	
FBG	Fasting blood glucose	
FRAP	Ferric Reducing Antioxidant Power	
EBV-EA	Epstein- Barr virus-early antigen	
EDP	Stradiol dipropionate	
ELISA	Enzyme-linked immunosorbent assay	
GC-Masss	Gas chromatography mass spectrometry	
GSH	Glutathione reduced	
GST	Glutathione –S- transferase	
HPLC	High performance liquid chromatograph	
IC50	Median Inhibitory concentration	
LD_{50}	Median lethal dose	
LPO	Lipid peroxidase	
MBC	Minimum Bacterial Concentration (MBC)	
MCH	Mean corpuscular hemoglobin	
MCHC	Mean corpuscular hemoglobin concentration	
MCV	Mean corpuscular volume	
MHA	Mueller Hinton Agar	
MIC	Minimum inhibitory concentration	

mMol	Mille Mol
MOLME	Moringa oleifera leaves methanol extract
MPV	Mean platelet volume
NCCLS	National committee of clinical laboratory
	standard
NHCR	Non hem agglutinating components
NMR	Nuclear magnetic resonance
OGTT	Oral glucose tolerance test
PLT	Platelet count
RBCs	Red blood cells
RDWA	Red blood cell distribution width absolute
SD	Standard deviation
SE	Standard error
SOD	Superoxide dismutase
SPSS	Statistical package of social sciences
TBARS	Thiobarbituric acid reactive substances
TC	Total cholesterol
TG	Triglycerides
UPLC	Ultra Performance Liquid Chromatography
WBCs	White blood cells
WSMoL	Water-soluble <i>Moringa oleifera</i> lectin